
ar
X

iv
:2

40
5.

07
35

3v
1

 [
cs

.D
S]

 1
2

M
ay

 2
02

4

Distributed Lovász Local Lemma under
Bandwidth Limitations

Magnús M. Halldórsson · mmh@ru.is · Reykjavik University, Iceland

Yannic Maus1 · yannic.maus@ist.tugraz.at · TU Graz, Austria

Saku Peltonen · saku.peltonen@gmail.com · Aalto University, Finland

Abstract

The constructive Lovász Local Lemma has become a central tool for designing efficient
distributed algorithms. While it has been extensively studied in the classic LOCAL model that
uses unlimited bandwidth, much less is known in the bandwidth-restricted CONGEST model.

In this paper, we present bandwidth- and time-efficient algorithms for various subclasses of
LLL problems, including a large class of subgraph sampling problems that are naturally formu-
lated as LLLs. Lastly, we use our LLLs to design efficient CONGEST algorithms for coloring
sparse and triangle-free graphs with few colors. These coloring algorithms are exponentially
faster than previous LOCAL model algorithms.

1Supported by the Austrian Science Fund (FWF), Grant P36280-N.

http://arxiv.org/abs/2405.07353v1

Contents

1 Introduction 1
1.1 Our Contributions: LLL solvers . 3

1.1.1 Disjoint variable set LLLs . 3
1.1.2 Binary LLLs with low risk . 4

1.2 Our Contribution: Coloring Sparse and Triangle-Free Graphs 4
1.3 Further Related Work . 5
1.4 Outline of the rest of the paper . 6

2 Distributed Lovász Local Lemma (Definitions) 6
2.1 Constructive Lovász Local Lemma (LLL) . 6
2.2 Constructive Distributed Lovász Local Lemma . 6
2.3 Simulatable Distributed Lovász Local Lemma (CONGEST) 7

3 Technical Overview & Technical Contributions 8
3.1 Disjoint Variable Set LLLs . 9
3.2 Binary LLLs with low risk . 9
3.3 Post-shattering in CONGEST . 13
3.4 Coloring Sparse Graphs . 13

4 Binary LLLs with low Risk 14

5 Disjoint Variable Set LLLs 18

6 Efficient Post-shattering in CONGEST 21
6.1 Network Decomposition . 22
6.2 The LLL algorithm of Chung, Pettie, Su . 22
6.3 Efficient Post-shattering in CONGEST (details) . 23

7 Applications and Bounding Risks 25
7.1 Example of Disjoint Variable Set LLL: Slack Generation 26
7.2 Techniques to Bound Risk . 27
7.3 Example LLLs with Low Risk . 29

8 Applications II: Coloring Sparse Graphs and Slack Generation 31
8.1 Degree+1 List Coloring (d1LC) . 31
8.2 Sparsity-preserving Degree Reduction . 31
8.3 Slack Generation for Sparse Nodes . 33
8.4 Coloring Sparse Graphs . 36
8.5 Coloring Triangle-free Graphs . 37

A Supplementary Results 42

1 Introduction

The Lovász Local Lemma (LLL) is a powerful probabilistic tool that provides conditions under
which many mildly locally dependent “bad events” defined over some random variables can simul-
taneously be avoided. In its computational version, one aims at also computing an assignment
of the random variables avoiding all these events. Due to its local nature, it has become an im-
portant cornerstone for distributed computation, e.g., [BFH+16a, CP19, Bra19, CPS17, MU21,
FG17, RG20, GHK18, Dav23]. For example, it plays a key role in the complexity theory of local
graph problems, as it is complete for sublogarithmic computation [CP19, MU21], in the sense that
any local graph problem (formally, any locally checkable labeling problem [NS95]) that admits a
o(log n)-round algorithm can be solved in the same asymptotic runtime as LLL. Other examples are
its usage as a tool for splitting graphs into smaller subgraphs while satisfying certain constraints
for divide-and-conquer approaches [Dav23], or to solve concrete problems such as computing edge
colorings with few colors [CHL+20, HMN22, Dav23]. It has also been imperative for developing
the award-winning round elimination lower bound technique [BFH+16a, Bra19, BBH+21].

Classically, research on local distributed graph problems has a strong focus on problems that
decompose nicely and are trivially solvable sequentially by greedy algorithms, such as finding maxi-
mal independent sets. For many other problems, especially those that go beyond the greedy regime
such as many partitioning problems or coloring problems with few colors, easy randomized algo-
rithms hold for high-degree graphs, but low-to-medium ranged degrees prove to be challenging.
Combinatorially, LLL is the go-to method for such problems, and efficient LLL algorithms allow
for many non-trivial results to immediately carry over [CPS17, HMN22, MU21].

The breakthrough Moser-Tardos algorithm and a more efficient distributed implementation
by Chang, Pettie, and Su yield logarithmic-time distributed algorithms [MT10, CPS17]. After the
publication of a seminal lower bound of Ω(log log n)-rounds [BFH+16a], the quest for understanding
under which circumstances sublogarithmic time, optimally poly log log n time, LLL algorithms exist
has begun [FG17, CP19, GHK18, Dav23]. This algorithmic success has almost exclusively been
in the bandwidth-unrestricted setting, with progress on bandwidth-restricted algorithms being
significantly more limited.

In this paper, we provide bandwidth- and time-efficient distributed algorithms for important
subclasses of LLL problems and exemplify their usefulness via several applications mainly in
the domains of subgraph sampling and coloring sparse graphs with few colors.

To explain the challenges that occur in developing bandwidth-efficient LLL algorithms we begin
with the necessary background.

Distributed Lovász Local Lemma (LLL) An instance L = (V,B) of the distributed Lovász
Local Lemma (LLL) is given by a set of independent random variables V and a family of ”bad”
events B over these variables. The Lovász Local Lemma [EL74] states (in its basic form) that there
exists an assignment to the variables that avoids all bad events as long as an appropriate relationship
holds between the probability of each bad event and the number of events that any given event
depends on. This relationship is called the LLL criterion, with many algorithms assuming stronger
criteria than the one required for the existence of a solution. The dependency graph H of an LLL
has a node for each bad event in B with two bad event nodes adjacent if they share a variable.

LOCAL and CONGEST model [Lin92, Pel00]. In the LOCAL model of distributed computing
a communication network is abstracted as an n-node graph G = (V,E) of maximum degree ∆.

1

Nodes serve as computing entities and edges represent communication links. Nodes communicate
with neighbors in synchronous rounds, where in each round a node can perform arbitrary local
computations and send one message of unbounded size over each incident edge. The objective is
to solve the problem at hand in the fewest rounds, e.g., with each node outputting its own color
in a coloring problem. In the distributed LLL in the LOCAL model one generally assumes that
the communication network is identical with the dependency graph H. This is motivated by the
fact that in most applications of LLL the communication network and the dependency graph are
in close resemblance and communication in H can be simulated in the original communication
network within a constant factor overhead in the round complexity. In the LOCAL model, there are
poly log log n LLL algorithms for certain special types of LLLs, e.g., for LLLs with small maximum
degree ∆ ≤ poly log log n [FG17, RG20], for LLLs with very strong LLL criteria [Dav23], or for
LLLs satisfying some additional technical properties [GHK18].

The CONGEST model is identical to LOCAL, except for the important difference that messages
are restricted in size; each message can only contain O(log n) bits, which fits only a constant number
of node identifiers. As a result, one has to be much more careful when modeling distributed LLL
instances and precise on which event and variable are simulated by which node of the communication
network. We illustrate these challenges with a key example central to this paper.

Example LLL (Slack Generation). One prime application in our work is the slack generation
LLL for graph coloring. The slack of a node in a partial coloring of a graph is the number of
colors that are available to it minus its uncolored degree in the graph. If every node has (positive)
slack, the respective coloring problem can be solved via a sequential greedy algorithm and there are
also poly log log n-round distributed algorithms, even under the presence of bandwidth restrictions
[HKNT22, HNT22]. For the rest of this example, assume a sparse ∆-regular graph G = (V,E), i.e.,
a graph in which every node v ∈ V has many non-edges in its neighborhood, that is, G[N(v)] is far
from being a clique. Such graphs can be colored with ≪ ∆ colors, but this cannot be done greedily
as nodes may not have slack. We show that coloring some of the nodes such that every remaining
node has slack (forming an easy greedily-solvable residual problem) can be modeled as an LLL (see
Algorithm 2 for the random process and Lemmas 7.1 and 8.6 for the formal statements):

Each node is activated with constant probability and each activated node picks a random
candidate color. Nodes with no neighbor with the same candidate color keep their color,
and otherwise relinquish it.

A node v gets slack in this process if two of its neighbors happen to get colored with the same
color, as in that case v only loses one available color from its color palette but two competing
uncolored neighbors. Now, introduce a bad event for each node that holds if v does not have
slack after this process. Despite many dependencies between the final colors of different nodes, one
can show that this forms an LLL, but the bandwidth constraints of the CONGEST model make
it extremely challenging to design efficient algorithms for this LLL. The bad event of a node v
depends on the randomness of nodes in its two-hop neighborhood, as these nodes’ color choices
determine which colors are finally retained in v’s neighborhood. Under bandwidth restrictions, v
can’t learn about the candidate colors of all of these nodes. To exploit parallelism, all existing
sublogarithmic-round distributed LLL algorithms gradually and carefully set more and more of
the variables. To steer decisions on future variables in these processes, it is pivotal that event
nodes learn all the information about partial assignments of their variables. Hence none of these
algorithms work efficiently in the CONGEST model.2

2The only exception is the implementation of [FG17] in [MU21] which is efficient for small maximum degree ∆—
the paper is formulated for ∆ = O(1), but remains efficient for ∆ up to poly log log n—, as one can still learn the
required information for a single step of their algorithm in poly∆ rounds.

2

1.1 Our Contributions: LLL solvers

First, as a conceptual contribution, we formalize LLL problems in the CONGEST model.

While it is straightforward to assume that each event and variable is simulated by some node
of the communication network, it is a priori unclear what knowledge nodes need regarding their
events/variables. We reduce that knowledge or ability to a few simple primitives that can typically
be implemented efficiently. Primarily, nodes need to be able to sample variables according to
their distribution, measure how bad a partial solution is for events, and perform certain restricted
communication between events and their variables. We refer to these LLLs as simulatable (see
Definition 2.3). Note that the slack generation LLL as presented is not directly simulatable as one
cannot measure the quality of partial variable assignments.

1.1.1 Disjoint variable set LLLs

As our second contribution, we present an LLL algorithm for the setting where intuitively the
variables of each bad event are split into two sets, and a good assignment for at least one of
the two variable sets is sufficient to avoid the bad event (formal statement in Theorem 5.2).

These LLLs appear frequently, e.g., when solving coloring LLL problems one may have colors
from two different color spaces available. Another simple example is given by the sinkless orientation
problem whose objective is to orient the edges of a graph such that every node has at least one
outgoing edge [BFH+16a, GS17]. The probability that a degree ∆ node has no outgoing edge is
upper bounded by 2−∆ when orienting the edges randomly, proving that this is an LLL. Now, one
can use the splitting algorithm from [HMN22] to split the edges into two sets such that every node
has roughly ∆/2 edges incident in each set, aligning the problem with our LLL framework and, to
the best of our knowledge, yielding the first (published) CONGEST algorithm for the problem.
Our approach in a nutshell. Our algorithm for disjoint variable set LLLs uses the influen-
tial shattering technique [Bec91, BEPS16]. First, we flip the variables in the first set at random
according to their distribution to ensure that most of the events are avoided. A standard anal-
ysis shows that this shatters the graph into small connected components—think of components
of size N = poly log n. Then, we use the second set of variables to avoid the remaining bad
events. In the LOCAL model, the latter can be done with the known deterministic LLL algorithm
from [FG17, RG20] applied on all components independently and in parallel. This post-shattering
phase runs in poly logN = poly log log n rounds, exploiting the components’ small sizes. Our core
technical contribution is an algorithm for the post-shattering phase in the CONGEST model. A
deterministic LLL CONGEST algorithm is not known. Also, randomized algorithms are insufficient
since their failure probability is 1/poly(N) = 1/poly(log n) on each component, and almost surely
one of the possibly many components will fail. Instead, we run Θ(log n) independent executions of
a randomized algorithm in parallel to amplify the error probability. That, however, places an addi-
tional burden on the bandwidth and becomes the central challenge to overcome. We leverage the
small component size for coordination and information learning in a more efficient manner, e.g., by
using significantly smaller ID spaces so that a single CONGEST message can encode Θ(log n) IDs.
There are several technical details that we spare in this introduction. For example, we cannot set
all variables of a small component in one go, and partially setting only some of the variables comes

3

with the responsibility to ensure that there even exists a feasible assignment for the remaining unset
variables.

1.1.2 Binary LLLs with low risk

In the absence of an alternative set of variables, the basic approach is to randomly sample all the
variables, and then retract the variables around the events that fail under the initial assignment.
The aim is then to solve another LLL on the subinstance induced by the retracted variables, redefin-
ing the events in terms of their marginal probability in the new instance, namely the probability
that they hold conditioned on the assignment to the variables that are fixed. The good news is
that this instance would be small (poly-log size), due to shattering, so we can afford to apply more
powerful LLL solvers. The bad news is that this approach alone is seldom sufficient by itself since
events that previously were not failing may now become highly unsatisfied by the retractions of
adjacent events and there may not even exist an assignment of the retracted variables that avoids
all bad events. Recursive retractions may lead to long chains, leading to at least Ω(log n) rounds.
The challenge is then how to limit retractions while ensuring a low conditional probability of bad
events.

We treat a class of LLL with binary variables that occurs frequently in sampling, where the
sampled nodes are black and the others white. Our approach is to perform a second round of
retractions but only to the white variables. We bound from above the marginal probabilities of the
shattered instance in terms of a parameter that we call risk.

As our third contribution, we present a bandwidth- and time-efficient algorithm for simulat-
able binary LLLs with low risk (formal statement in Theorem 4.4).

One example of such a problem is the sampling of a subset S of the nodes of a sparse graph G
such that every node v of the graph has few neighbors in S but G[N(v)∩S] proportionally preserves
the sparsity of v, i.e., the number of non-edges in its neighborhood. This Degree-Sparsity-Sampling
problem (DSS) is also essential to our coloring results, where we sample two (or more) such sets
that can serve as alternative sets of variables for the slack generation LLL, effectively enabling us
to solve the slack generation problem via our first LLL solver. In Section 3, we explain the details
of why the problem fits our LLL framework, including its non-trivial simulatability. Its formal
solution is presented in Section 8. This example illustrates also that our LLL solvers are most
powerful when used in tandem. In Section 7, we present several additional examples of problems
(and schemas of problems) that can be solved efficiently with our LLL algorithms in CONGEST.
Additionally, we show in Section 7 that any LLL that can be solved by the main LLL algorithm of
[GHK18] has low risk and hence, in can also be solved with our framework in LOCAL.

We point out to the knowledgeable reader that the criteria of our LLL solvers are crucially
in between polynomial and exponential whenever ∆ ≥ poly log log n. This is the main regime of
interest as there are poly log log n-round LLL solvers for smaller ∆ that work with a polynomial
criterion and in CONGEST [MU21], and often the bounds on the error probability in LLLs turn
into with high probability guarantees for larger ∆.

1.2 Our Contribution: Coloring Sparse and Triangle-Free Graphs

Graph coloring is fundamental to distributed computing, as an elegant way of breaking symmetry
and avoiding contention, and was in fact the topic of the original paper introducing the LOCAL

model [Lin92]. The typical setting that has been extensively studied is coloring a graph with ∆+1

4

colors; in the centralized setting, such a coloring can be computed via a simple greedy algorithm.
Importantly for the distributed setting, any partial solution to the problem can be extended to a full
solution without ever needing to revert any coloring choice, a property that evidently does not hold
when coloring with fewer colors and inherently makes it much more difficult to color large parts of
the input graph in parallel. Sparse graphs admit colorings with ≪ ∆ colors, and logarithmic-time
LOCAL algorithms are known, e.g., to color triangle-free graphs with ≪ ∆ colors [CPS17].

We use our LLL algorithms to improve upon this result in two ways: First, our runtime is expo-
nentially faster, second, in contrast to the prior algorithms our algorithms work in the CONGEST
model. We summarize our results in the following theorem. Recall, that a node is sparse if there are
many non-edges in its induced neighborhood (see Section 8 for the precise sparsity requirement).

There is a randomized CONGEST algorithm that w.h.p. colors any triangle-free graph with
∆−Ω(∆) colors and any locally sparse graph with ∆− poly log log n colors. The algorithms
run in poly log log n rounds (formal statements in Theorems 8.8 and 8.9).

1.3 Further Related Work

Due to its local nature, LLLs are a powerful tool in distributed computing, with several papers
tackling its distributed complexity, e.g., [BFH+16b, CPS17, FG17, BMU19, BGR20, GHK18, CP19,
CHL+20, RG20, MU21, Dav23]. The prime characteristic of a (symmetric) LLL is its LLL criterion
that is the relation of the dependency degree d (the maximum degree in H), and the global upper
bound p on the probability for each bad event to hold. The original lemma of Lovász and Erdös
[EL74] showed the existence of a feasible assignment as long as ep(d + 1) < 1 holds. A simplified
summary is that essentially all LLLs of interest ((1 + ε)epd < 1 is required) can be solved in
O(log n) rounds of LOCAL [MT10, CPS17], while superfast poly(log log n) algorithms are only
known for a special class of ”(near) exponential” LLLs (p2O(d/ poly log logn) < 1) or [Dav23] or very
low-degree (i.e., poly(log log n)-degree) graphs under polynomial LLL criteria (pd32 < 1) [FG17],
or when events satisfy certain additional robustness conditions [GHK18]. See [RG20, GHK18] for
deterministic algorithms for polynomial LLLs. If the strong condition p < 2−d holds LLLs can
be solved deterministically in poly∆ + O(log∗ n) rounds [BMU19, BGR20]. In CONGEST, the
only algorithms known are randomized and for low-degree graphs [MU21] and for ”vertex splitting”
problems [HMN22].

There are countless publications on the classic topic of distributed graph coloring with ∆ + 1
colors focusing on different aspects of the problem, e.g., for coloring small degree graphs efficiently
[Bar15, BEG18, FHK16, MT20, Mau21, FK23], for efficient deterministic coloring in LOCAL [RG20,
GK21, GG23] and in CONGEST [BKM20, GK21], and for randomized coloring algorithms in
LOCAL [Joh99, HSS16, CLP20, HKNT22] and in CONGEST [HKMT21, HN21, HNT22]. See also
[BE13] as a great resource covering many early results on the topic.

Coloring with fewer colors: Recently, highly involved algorithms were designed to color non-
clique graphs with ∆ ≥ 3 with one fewer color, that is, with ∆ colors [GHKM18, FHM23]. The
resulting designed poly log log n algorithm works in the LOCAL model, but the algorithm inherently
does not work in the CONGEST model as one subroutine is based on learning the full topology of
ω(1)-diameter subgraphs.

Chung, Pettie, and Su [CPS17] give a LOCAL algorithm for ∆/k-coloring triangle-free graphs
for any k = O(log∆), running in O(log n) time (faster for very large ∆). A much more constrained
notion of sparsity is the arboricity of a graph, that is, the number of forests into which one can
partition the graph. For any constant ε > 0, there is a O(log n)-round deterministic algorithms to

5

color graphs with arboricity α with O(2 + ε)α colors, and it is known that the runtime is tight,
even for randomized algorithms [BE10].

Notation. For a graph G = (V,E) and two nodes u, v ∈ V let distG(u, v) denote the length of
a shortest (unweighted) path between u and v in G. For a set S ⊆ V we denote distG(v, S) =
minu∈S distG(v, u). For an integer k ≥ 0 and a node v ∈ V of a graph G = (V,E) let Nk

G(v) = {u ∈
V : distG(v, u) ≤ k}. For a set S, we define Nk

G(S) =
⋃

v∈S N
k
G(v).

1.4 Outline of the rest of the paper

Section 2 contains our LLL formalization in CONGEST, followed by Section 3 in which we present a
technical overview of all results and techniques. Section 4 contains our LLL algorithm for LLLs with
low risk. Section 5 presents our LLL algorithms working with two alternating sets of variables. Both
of our LLL algorithms use the explained shattering framework that consists of a pre-shattering phase
and a post-shattering phase. Our solution to the post-shattering phase is presented in Section 6.
In Section 7, we present several applications of our LLL algorithms. In Section 8, we present our
algorithm for DSS and our algorithms for coloring triangle-free and sparse graphs with few colors.

2 Distributed Lovász Local Lemma (Definitions)

In this section, we present our formalization of distributed LLL in the CONGEST model.

2.1 Constructive Lovász Local Lemma (LLL)

An instance L = (V,B) of the distributed Lovász local lemma (LLL) is given by a a set V =
{x1, . . . , xkV} of independent random variables and a family B of ”bad” events {E1, . . . , EkB} over
these variables. Let vbl(E) denote the set of variables involving the event E and note that E
is a binary function of vbl(E). The dependency graph HL = (B, F) is a graph with a vertex
for each event and an edge (E , E ′) ∈ F whenever vbl(E) ∩ vbl(E ′) 6= ∅. The dependency degree
d = dL is the maximum degree of HL. We omit the subscript L when the considered LLL is
unambiguous. Additionally, we use the parameters dE = maxE∈B |vbl(E)| as the event degree and
dV = maxx∈V |{E ∈ B|x ∈ vbl(E)}| as the variable degree. Define p = maxE∈B Pr(E) (or let p simply
be an upper bound on the term on the right-hand side). The Lovász Local Lemma [EL74] states
that Pr(∩E∈BĒ) > 0 holds if ep(d + 1) < 1, or in other words, there exists an assignment to the
variables that avoids all bad events.

In the constructive Lovász local lemma one aims to compute such an feasible assignment, avoid-
ing all bad events. This is often under much stronger conditions on the relation of p and d. The
relation of p and d is referred to as the LLL criterion. If pdc < 1 for some constant c > 1 we speak
of a polynomial criterion, while if p2d < 1, we have an exponential criterion. The problems we
consider have criteria that are between the polynomial and exponential.

2.2 Constructive Distributed Lovász Local Lemma

In the distributed setting, the LLL instance L is mapped to a communication network G = (V,E).
We are given a function ℓ : B ∪ V → V that assigns each variable and each bad event to a node
of the communication network. We assume that for each variable x ∈ V, the node ℓ(x) knows
the distribution of x including the range range(x) of the variable. We also say that node ℓ(x)
simulates the variable/event x. For a vertex v ∈ V , we call l(v) = |ℓ−1(v)| the load of vertex v.
The (maximum) vertex load of an LLL instance is l = maxv∈V l(v).

6

In the constructive distributed LLL we execute a LOCAL or CONGEST algorithm on G to
compute a feasible assignment ϕ. Afterwards, for each variable x ∈ V, node ℓ(x) has to output
ϕ(x).

In general, the graph G and the dependency graph HL do not have to coincide and d, dE , dV and
the maximum degree ∆ of G shall not be confused with each other. However, distances between
events in HL and the corresponding nodes in G should be closely related.

Definition 2.1. A triple (L, G, ℓ) has locality ν if distG(ℓ(E), ℓ(x)) ≤ ν for all events E of L and
variables x ∈ vbl(E).

Observation 2.2. We have distG(ℓ(E), ℓ(E
′)) ≤ 2ν for all dependent events E , E ′.

Note that the splitting problems of [HMN22] modeled as LLLs have unit locality and unit
distance between dependent events, which makes them particularly amenable to CONGEST imple-
mentations.

If (L, G, ℓ) has small locality, then in the LOCAL model we can perform all natural basic op-
erations on events and variables of L efficiently. Examples of such operations are testing whether
an event holds under a variable assignment [MT10, CPS17] or computing conditional event failure
probabilities under a partial assignment [FG17, Dav23]. Any LOCAL algorithm for the dependency
graph can be simulated in the communication network with a multiplicative overhead of O(ν) in
the round complexity, where ν is the locality of the LLL instance.

(Partial) Assignments. An assignment of a set of variables V is a function that assigns each
variable x ∈ V a value in range(x). We use the value ⊥ for variables that have not been set. A partial
assignment ϕ of a set of variables V is a function with domain V satisfying ϕ(x) ∈ range(x)∪{⊥} for
all x ∈ V. A partial assignment ψ agrees with another (partial) assignment ϕ if ψ(x) = ϕ(x) for all
x /∈ ψ−1(⊥), i.e., if all proper values assigned by ψ match those of ϕ. For two partial assignments
ϕ1, ϕ2 with ⊥ ∈ {ϕ1(x), ϕ2(x)} for all variables x, let ϕ(x) = ϕ1 ∪ ϕ2 be the assignment with
ϕ(x) = ϕ1(x) whenever ϕ1(x) 6= ⊥ and ϕ(x) = ϕ2(x), otherwise. For an event E and a partial
assignment with vbl(E) ∩ ϕ−1(⊥) = ∅, the term E(ϕ) states whether E holds under ϕ.

A retraction ψ of a partial assignment ϕ is a partial assignment that agrees with ϕ. We say that
we retract a variable x of ϕ if we set its value to ⊥ (formally this creates a new partial assignment).
For an event E and a partial assignment ϕ, we use the notation Pr(E | ϕ) for the conditional
probability over assignments with which ϕ agrees (the randomness is only over the variables in
ϕ−1(⊥)).

2.3 Simulatable Distributed Lovász Local Lemma (CONGEST)

In the CONGEST model, a small locality of the function ℓ does not ensure that basic primitives
can be executed efficiently. In Section 3.2, we discuss the challenge of even evaluating the status of
events via the example of the degree-bounded sparsity splitting problem (DSS).

A second challenge that we quickly touched upon appears from the need to make progress in
large parts of the graph in parallel which requires us to set many (but not all) variables in parallel.
The main difficulty is to ensure that we never run into an unsolvable remaining problem, that is,
we need to ensure that the remaining variables can always be assigned values such that a feasible
solution avoiding all bad events is obtained. This is in stark contrast to problems like computing a
maximal independent set or a ∆+1-coloring in which any partial solution can always be completed
to a solution of the whole graph. Thus, to make progress in large parts of the graph in parallel, we
need to measure how bad a partial assignment is for events that do not have all their variables set.
Naturally, for a bad event E and partial assignment ψ this is captured by the conditional probability

7

Pr(E | ψ). The LOCAL model works of [FG17, GHK18, Dav23] implicitly compute these values.
However, in CONGEST it can be impossible to compute such marginal probabilities.

In our simulatability definition (see Definition 2.3) we do not require that conditional proba-
bilities can be computed in the most general setting but only in the easier setting where we are
given locally unique IDs from a small ID space. In the presence of little bandwidth, this helps
significantly in some of the LLLs considered in this work and we believe that it will be helpful for
other problems.

Next, we state the minimal assumptions that we require from an LLL instance.

Definition 2.3 (simulatable). We say an LLL (L, G, ℓ) is simulatable in CONGEST if each of the
following can be done in poly log log n rounds:

1. Test: Test in parallel which events of L hold (without preprocessing).

2. Min-aggregation: Given 1-bit string in each event (variable), each variable (event) can
simultaneously find the minimum of the strings for its variables (for its events).

For the following items, it is sufficient if they hold in the setting that events and variables are
given O(log log n)-bit IDs3 (that are unique within distance 4ν in G):

3. Evaluate: Given a partial assignment ϕ, and partial assignments ψ1, . . . , ψt, t = O(log n),
in which each variable knows its values (or ⊥), each event E of L can simultaneously for all
1 ≤ i ≤ t decide if

Pr(E | ψi) ≤ αPr(E | ϕ)

holds , where α is a parameter known by all nodes of G.

4. Min-aggregation: We can compute the following for O(log n) different instances in parallel:
Given an O(log log n)-bit string in each event (variable), each variable (event) can simultane-
ously find the minimum of the strings for its variables (for its events).

Min-aggregation to variables allows events to retract their variables. Similarly, min-aggregation
to events allows events to decide if they have a retracted variable. Min-aggregation with larger
messages is used to find acyclic orientations of the dependency graph, a necessary step of the LLL
algorithm of [CPS17]. Due to the presence of smaller IDs, primitives (3) and (4) appear technical,
but we emphasize that these are crucial to our CONGEST solution. Further, it is unlikely that any
sublogarithmic-time algorithm can go along without measuring the quality of partial assignments
in one way or the other; with large IDs, the respective quality of partial assignments can provably
not be checked in CONGEST.

3 Technical Overview & Technical Contributions

In Section 3.1, we give a technical overview of our disjoint variable set LLL solver. In Section 3.2,
we present the crucial ingredients of LLL solver for binary LLLs with low risk and explain how to
use it for the degree-bounded sampling problem. In Section 3.3, we present a condensed version of
our approach to the LLLs arising in the post-shattering phase of our algorithms. In Section 3.4,
we sketch how to use our LLL solvers to obtain our coloring results.

3In general for the whole LLL instance and for non-constant distances such identifiers do not exist, but our LLL
algorithms only use the primitives in settings where they do exists and are available.

8

3.1 Disjoint Variable Set LLLs

In this section, we present algorithms for disjoint variable set LLLs, where we have two disjoint
sets of variables V1,V2 available for each event. In fact, we consider events E that can be written
as the conjunction of two events E1, E2 where vbl(Ei) = Vi and Pr(Ei) ≤ p holds for i = 1, 2. Note,
that to avoid E it is sufficient to avoid E1 or E2. Next, we sketch our algorithm.

◮ We first sample all variables in V1 according to their distribution (pre-shattering phase), and
then move all non-avoided events (formally when E1 is non-avoided) to the post-shattering phase.
There we use the variables in V2 to avoid the respective second events E2. ◭ In contrast to our
binary LLL solver, there are no retractions. For suitable p, the property Pr(E1) ≤ p ensures that
the components in the post-shattering phase are of size N = O(log n polyd), and the property
Pr(E2) ≤ p ensures that each component in the post-shattering phase is an LLL. The main focus
of our work is the case where d is at most polylogarithmic, in which case N = poly log n. In
LOCAL, we use Theorem A.2 to solve each small component in poly logN = poly log log n rounds.
We obtain the following theorem.

Theorem 5.2. There are randomized LOCAL and CONGEST algorithms that in poly log log n
rounds w.h.p. solve any disjoint variable set LLL of constant locality ν with dependency degree
d ≤ poly log n and bad event upper bound p. The LOCAL algorithm requires p < d−14 and the
CONGEST algorithm requires p < d−(2+cl)−(4c+12c∆ν) log logn, l ≤ dcl , ∆ ≤ logc n for constants
cl, c∆ ≥ 1, and simulatability.

The CONGEST part of the theorem is more challenging for several reasons. We have already dis-
cussed the challenges regarding the evaluation of events and measuring progress for partial solutions.
Another challenge is that shattering the dependency graph is not enough but the standard analysis
only shatters the dependency graph. The issue is that, in CONGEST, one cannot independently
deal with different components of the dependency graph if the mapping of the events/variables of
different components to the communication network overlaps.

Thus, our solution relies on a stronger form of shattering in which we guarantee that after
mapping the components of the dependency graph to the communication network, the components
in the communication network remain small. This is one of the reasons why we require a stronger
LLL criterion in CONGEST; note that all of our applications satisfy this stronger criterion.

The second difference between our CONGEST and LOCAL solutions lies in the post-shattering
phase which we detail in Section 3.3.

3.2 Binary LLLs with low risk

In this section, we consider binary LLLs, that is, the range of the variables is {black,white}.

Outline of our binary LLL algorithm: In our algorithm, each (original) event E comes with
an associated event assoc(E) (usually on the same variable set) that imposes stricter conditions,
i.e., it is harder to avoid, but avoiding assoc(E) implies avoiding E . ◮ We first flip all variables
according to their distribution and then retract all variables around failing associated events. Then,
we perform a second round of retractions in which we only retract white variables around those
events that were affected by a (partial) retraction in the first round of retractions. We then form
the residual LLL instance on the set of unset variables and all incident events. The probability of
an event is now the conditional probability given the assignment to the unretracted variables. We
apply our post-shattering solver to this instance to produce the final solution. ◭

We introduce a new term, risk, which essentially upper bounds the conditional probability of
a bad event to hold in the post-shattering phase under these promises. To show that it is small,

9

we leverage the properties that hold for our retractions. Consider the four cases that can occur
for an event: a) the event was unhappy, i.e., assoc(E) occurred on the initial assignment, so all
incident variables are retracted; b) the event was affected : it was happy, but had incident variables
retracted in the first round, so all incident white variables were retracted in second round; c)
event was impacted : it was not unhappy and not affected, but some incident white variables were
retracted in second round (by another event), and d) the event was at peace, with no incident
variables retracted. We want to ensure that the conditional probability of the event is low in all
these cases.

We say that an event pair E , assoc(E) testifies risk x, if

1. Pr(assoc(E)) ≤ x, and

2. the marginal probability in cases a)–d) is at most x.

Condition (1) is required to ensure that the probability of becoming unhappy is small such that
the process shatters the graph into small components for the post-shattering phase. As E implies
assoc(E), condition (1) also ensures that the marginal probability for all events in case a) is bounded
above by x. Observe that in b)–d), the final assignment ψ for the post-shattering phase was one
derived from the initial one ϕ for which the event assoc(E) did not take place. The guarantees on
ψ for an event E are that either no black variables were retracted from ϕ or all white variables were
retracted from ϕ. We say that in this case ψ respects the initial assignment ϕ. Thus, condition (2)
is equivalent to the following statement

⊲ Pr(E | ψ) ≤ x holds, for any assignment ψ that respects some assoc(E)-avoiding assignment.⊳

In general, we show the following.

Theorem 4.4. There are randomized LOCAL and CONGEST algorithms that in poly log log n
rounds w.h.p. solve any LLL of constant locality ν with dependency degree d ≤ poly log n and
risk p. The LOCAL algorithm requires p < d−14 and the CONGEST algorithm requires p <
d−(4+cl)−(4c+12cν) log logn, l ≤ dcl , ∆ ≤ logc∆ n for constants cl, c∆ ≥ 1 and that the LLL is simulat-
able.

The main difficulty with using Theorem 4.4 is to bound the risk of an LLL. As we prove in
Section 7, any LLL that can be solved with the main LLL algorithm of [GHK18] has low risk.
Hence, in the LOCAL model, our algorithm subsumes the one of [GHK18]. The issue is that it
is difficult and technical to prove that an LLL fits the framework of [GHK18] (also see Section 7
details). The core benefit of our approach is that it is superior for any binary LLL containing
monotonically increasing events, that is, events that favor more nodes to be sampled. Examples
are satisfying a minimum degree bound into a set of sampled nodes, or, as in the DSS problem,
a minimum sparsity in the sample. In either case, the respective bad events are easier to avoid if
we add more nodes to the sample. We prove the following lemma, formally proven in Section 7
(Lemma 7.3).

No risk Lemma. The risk of a monotone increasing event E is Pr(E) testified by assoc(E) = E .

The name of the lemma stems from the fact that there is no additional risk from the conditional
probabilities of the post-shattering phase. The conditional probability is identical to the probability
of the event in the original LLL. Intuitively, the lemma holds, as any affected event E retracts all
of its white incident variables, essentially, giving it free randomness for the post-shattering phase.

10

v

?

?

?

?

?

?

v

?

?

?

?

v

?

?

v

Figure 1: An illustration of the cases a)–d) that can appear in the post-shattering phase of the degree-
bounded subgraph problem. Note that the illustration is only schematic and such a tight example with
∆ = 6 does not satisfy any LLL criterion. The colors represent the variable assignments after the initial
sampling. The question mark indicates that the respective variable got retracted and participates in the
post-shattering phase. In a), the vertex v got an extremely bad split and retracted all of its incident variables.
In b), v is affected by a retraction from a type a) node, and hence retracts all of its incident white variables.
In c), we see a node that was neither unhappy nor affected, but has some of its white variables retracted
by some other node of type c). The node in d) is happy and does not undergo any retractions. It does not
participate in the post-shattering phase. W.h.p. the bulk of the nodes are of type d).

The fact that some of its adjacent variables may remain black can only make the situation better
as the event prefers black anyways and its conditional probability is upper bounded by its initial
probability Pr(E).

Example 1 (degree bounded subgraphs): Let us see our framework in action with a first
simple example. We are given a ∆-regular graph and an integer k (with k ≤ ∆/6 and k ≫ log ∆)
and seek a subgraph S such that each node has at least k/3 and at most 4k neighbors in S. For
each node v we have events Emin

v and Emax
v that hold if the number of neighbors of v in S is less

than k/3 and more than 4k, respectively. For Emax
v the associated event asks to maintain a stronger

of bound of 2k on the number of neighbors of v in S. For Emin
v the associated event is the event

Emin
v itself.

After an initial random sampling into a set S with probability q = k/∆, each node has expected
degree k into S. Nodes with degree outside the range [k/3, 2k] are unhappy, so all neighbors are
retracted (both sampled and unsampled neighbors become undetermined). Now, nodes that had an
adjacent neighbor retracted go through the second round of retraction, with all unsampled neighbors
becoming undetermined. The post-shattering LLL is formed in terms of the undetermined nodes.
Also see Figure 1 for an illustration of the four types of nodes (a)–d)).

We reason that the risk of all events is small. Emin
v is monotonically increasing as it favors more

nodes in the sample and by the No Risk Lemma its risk equals Pr(Emin
v) which is upper bounded

by exp(−Θ(k)) by a Chernoff bound. Similarly, a Chernoff bound shows that the probability of
assoc(Emax

v), asking for at most 2k sampled neighbors, is at most exp(−Θ(k)) ≪ 1/poly(∆), proving
(1). This implies that the process shatters and we obtain small unsolved components in the post-
shattering phase. To argue that the post-shattering phase indeed is a solvable LLL, what is left to
prove is that Emax

v has risk x = 1/poly(∆); we already bounded Pr(assoc(Emax
v)) for proving (1).

To prove (2), let us derive the conditional probabilities for all four types of nodes, and thereby
the risk. The unhappy node has all its incident variables remain in the post-shattering instance,
by Chernoff bound the conditional probability of Emax

v is exp(−Θ(k)) ≪ 1/poly(∆). The affected
node has at most 2k incident nodes set (only the black ones) and therefore at least ∆− 2k ≥ 2∆/3
incident variables undetermined. By Chernoff, adding more than 2k black incident variables is
highly unlikely. Hence, its final number of neighbors in S will be larger than 4k, with probability

11

1

8 2

3

4

5

6

7

v

Figure 2: An example of a node v with ∆ = 8 neighbors and two examples of sampled subsets (red patterned
nodes, black nodes). The dashed edges are non-edges, that is, all other edges e.g., the edge {1, 6} are present
in the graph. This neighborhood has 14 non-edges out of the

(

8

2

)

= 28 tentative edges. While v has only
degree 4 = ∆/2 into either of the two subsets, the red patterned subset would be a sampled subset with
a small sparsity, as it only contains the single non-edge {1, 8}. The black subset has larger sparsity, as it
contains five non-edges {2, 3}, {3, 4}, {2, 4}, {4, 6}, and {3, 6}. The number of non-edges in a sampled set is
not a linear function of the nodes’ sampling status.

exp(−Θ(k)). The impacted node has some white variables retracted, so its degree into S may
increase in the post-shattering step, but again by Chernoff, it will increase by more than 2k with
probability exp(−Θ(k)). Finally, the events at peace already satisfy the requirement. Hence, the
conditional probabilities of Emax

v are all at most exp(−Θ(k)) ≪ ∆−32, bounding the event’s risk.

Not having to analyze how the white-node-retraction affects the conditional probabilities of Emin
v ,

but instead relying on the No Risk Lemma is particularly helpful in our next example where the
Emin
v is replaced with a significantly harder to deal with black-favoring event.

Example 2 (DSS): Recall that we seek a subgraph S such that for each node v, the graph
G[S∩N(v)] has both low-degree and large sparsity. Let mv denote the number of non-edges within
G[N(v)]. Also see Figure 2.

Specifically, given a sampling probability q, the expected number of non-edges in G[S ∩N(v)]
is q2mv. Again, we have a bad event Emax

v that holds if G[S ∩ N(v)] has more than 6q∆ vertices,
and a bad event Emin

v that holds if G[S ∩ N(v)] has fewer than q2mv/6 non-edges. The stricter
respective events have the tighter bound of 2q∆ on the degree into S, and the same lower bound
on the number of non-edges. Recall that nodes sampled into S are black, those not sampled are
white, while retracted nodes become undetermined.

After this setup, the proof for bounding the respective risks is identical to the first example.
Emax
v and its associated event are of the same nature as in Example 1, and its risk can be bounded

using identical arguments. Emin
v is a monotone increasing event, which again, by the No Risk Lemma

has risk Pr(Emin
v). Bounding this probability is challenging in itself as it requires a concentration

bound that handles dependencies (for reasoning about the number of non-edges in the sample),
but the conclusion is the same: the risk is O(∆−32), as desired. Here, the No Risk Lemma shows
its power, as without it, one would have to deal with dependencies and hard-to-grasp conditional
probabilities of partial assignments at the same time.

Simulatability in CONGEST: Another crucial benefit of our framework is that one can easily
mix and mingle events. This is pivotal to ensure that the DSS is simulatable. Given some sample S,
a node v cannot even efficiently determine the number of non-edges in G[N(v)∩S], even if ∆ is only
polylogarithmic, as encoding the topology of the graph requires Ω(∆2) IDs and a node can only
receive ∆ IDs of information per communication round. But, a node can easily determine its degree
dS(v) in G[S], and reject the sample if its degree is too large. On the other hand, if the degree is
small, also encoding the topology of the sampled subgraph in v’s neighborhood can be done more

12

efficiently and hence the DSS-LLL becomes simulatable. The No Risk Lemma is also helpful in
that respect, as it shows that the associated event of a monotone increasing event is the event itself.
Recall, that in the algorithm the associated event is needed to raise a red flag whenever the initial
sampling goes wrong for the respective event. Prior work implicitly used involved associated events
based on conditional probabilities which cannot be computed in CONGEST.

3.3 Post-shattering in CONGEST

In the post-shattering phase, we are given another LLL L in a network with significantly fewer
nodes, i.e., each component has at most N = poly log n nodes. Hence, the original criterion can be
restated as p < d−Ω(log logn) = d−2 logN , while the bandwidth remains the original Θ(log n). In the
LOCAL model, we can immediately solve this in poly log log n rounds via Theorem A.2, but that
requires large bandwidth for gathering large parts of the graph at a single node.

◮ In our CONGEST algorithm, we first compute a network decomposition of the components
into C = O(logN) collections consisting of O(log2N)-diameter clusters [RG20, GGR21] with a
distance k = 2ν between clusters in the same collection (recall, ν is the locality of the LLL). Then,
we iterate through the collections in sequence. Before each iteration i, we have a partial assignment
ϕi−1, formed by the assignments made in previous iterations, and formulate a new LLL Li on the
unset variables of nodes in the i-th collection. The bad events of Li ensure that after setting these
variables the conditional probability of each original event (of L) increases at most by a factor
d2. By Markov’s inequality the probability that the increase is larger than d2 if a subset of the
variables of an event are sampled is at most 1/d2 (see Claim 6.5 for details). By induction over i,
we maintain the invariant that after processing the i-th collection, we have Pr(E | ϕi) ≤ p · d2i for
each bad event E of L. Thus, at the end Pr(E | ϕ) ≤ pd2C < 1, if we assume the criterion p < d−2C .
Since all variables have been fixed by ϕ = ϕC+1, the event E is avoided under the final assignment
ϕ.

To solve Li on each cluster (and thus each collection), we run O(log n) parallel instances of the
LLL algorithm of [CPS17]. Each of them succeeds (avoids all bad events of Li) with probability
1 − 1/N ≥ 1/2. Thus, at least one of these instances succeeds w.h.p. To determine a successful
assignment, we use bitwise aggregation, utilizing the small cluster diameter. ◭

Simulatability (Definition 2.3) is the key to solving these instances in parallel in CONGEST. It
ensures that each of the steps of the [CPS17] algorithm of all instances in parallel can be imple-
mented fast enough. The full details are in Section 6. We also need to efficiently communicate
between events and their variables, e.g., to resample variables. Note that many of our LLLs can
only perform these steps efficiently after we compute smaller locally unique node IDs from an ID
space of size polyN , which only requires O(log log n) bits per ID.

Lastly, we want to remark that the idea of amplifying probabilities by running several instances
of an algorithm in parallel has been used before, but in significantly simpler settings [HMN22,
Gha19].

3.4 Coloring Sparse Graphs

Recall, that providing slack to sparse nodes by partially coloring the graph can be modeled as an
LLL. Once uncolored nodes have slack, we can complete their coloring by a simple deg + 1-list
coloring procedure from prior work (this brings us back to the greedy coloring regime that is well-
understood), [HNT22]. Unfortunately, as discussed, the slack generation LLL is not simulatable
and cannot be tackled easily in the CONGEST model. To provide slack to nodes in CONGEST, we
use the DSS problem to compute two (or more) degree-bounded sparsity-preserving sets S1 and S2.
Having these degree-bounded sets with many non-edges in each neighborhood has several benefits.

13

First of all, if we only color nodes in the degree-bounded sets, the slack generation problem becomes
simulatable. Secondly, we also partition the color space into two linearly-sized sets that are then
used for coloring S1 and S2, respectively. As every node can obtain slack from coloring nodes in
either set, this effectively splits the slack generation LLL variables into two sets and aligns with our
two disjoint sets LLL solver. We obtain a slack generation algorithm with runtime poly log log n.

4 Binary LLLs with low Risk

In this section, we consider binary LLLs, that is, the range of the variables is {black,white}.
For an event E ′, let Retract(E ′) consist of all assignments ψ that are a retraction of some full

assignment ϕ under which E ′ is avoided. Let Respect(E ′) ⊆ Retract(E ′) be the set of assignments ψ
that additionally have the guarantee that either all white variables under ϕ in vbl(E ′) are retracted,
i.e., vbl(E ′) ∩ ϕ−1(white) ⊆ ψ−1(⊥), or no black variables under ϕ in vbl(E ′) are retracted, i.e.,
vbl(E ′) ∩ ϕ−1(black) ∩ ψ−1(⊥) = ∅.

Definition 4.1 (risk). We say that an event E ′ testifies risk x for some event E ⊆ E ′ if

max
{

Pr(E ′), max
ψ∈Respect(E ′)

{Pr(E | ψ)}
}

≤ x . (1)

The risk of an event E is the smallest risk testified by some event E ′ ⊇ E .

The bound on Pr(E ′) will ensure shattering. The bound on maxψ∈Respect(E ′){Pr(E | ψ)} upper
bounds the marginal probabilities of event E in the post-shattering phase. The intuition for the
condition E ′ ⊇ E is that we want E to be avoided if an event is at peace during the whole process.

The next definition captures the binary LLLs that we deal with in this section.

Definition 4.2 (binary LLLs with low risk). A binary LLL with risk p consists of the following:

• V a set of binary independent random variables with range {black,white} ,

• B a set of events over V with risk at most p and Pr(E) ≤ p for all E ∈ B ,

• For each event E ∈ B an associated event assoc(E) testifying its risk.

The dependency degree d is the maximum degree of the dependency graphs induced by all events.
The goal is to compute an assignment of the variables in V such that all events in B are avoided.
We extend the definition of simulatability of a binary LLL with low risk and also require that the
associated events can also be evaluated in poly log log n rounds on any assignment of the variables.

Remark 4.3. Note that the risk of an event as given in Definition 4.1 minimizes over all possible
associated events and as such may not be easily computable. Hence, in Definition 4.2, we require
that the respective associated events are known in a simulatable manner to the nodes of the network.

We prove the following theorem.

Theorem 4.4. There are randomized LOCAL and CONGEST algorithms that in poly log log n
rounds w.h.p. solve any LLL of constant locality ν with dependency degree d ≤ poly log n and
risk p. The LOCAL algorithm requires p < d−14 and the CONGEST algorithm requires p <
d−(4+cl)−(4c+12cν) log logn, l ≤ dcl , ∆ ≤ logc∆ n for constants cl, c∆ ≥ 1 and that the LLL is simulat-
able.

14

We next present our algorithm for Theorem 4.4 that uses the shattering technique. The
CONGEST version of the algorithm requires relies on the post-shattering algorithm from Section 6.

Algorithm: Consider a binary LLL as in Definition 4.2.

• Initial sampling (Step 1): Sample all variables in V according to their distribution.

Let ϕ be the resulting assignment.

• Retraction I: For each E ∈ B for which assoc(E) holds under ϕ, retract all incident variables,

• Retraction II: For each E ∈ B with an unset variable, retract all incident white variables,

Let ψpre be the resulting partial assignment.

• Post-shattering: Set up the following LLL problem consisting of all unset variables and
their incident (marginal) events.

– Variables: Vpost = ψ−1
pre(⊥), with their respective original probability distribution,

– Bad Events: Bpost = {E|ψpre : E ∈ B, vbl(E) ∩ Vpost 6= ∅}

– ℓpost(x) = ℓ(x) for all x ∈ Vpost and ℓpost(E
′) = ℓ(E) for all E ′ ∈ Bpost. To simplify the

notation, we refer to ℓpost as ℓ.

We compute an assignment ψpost of all variables in Vpost avoiding all events in Bpost. In LOCAL

we use Theorem A.2 and in CONGEST we use our algorithm from Lemma 6.1.

• Return ψ = ψpre ∪ ψpost .

Analysis of the post-shattering phase. We first show that the LLL formulation in the post-
shattering phase indeed is an LLL. Afterwards we show that with high probability the dependency
graph of this LLL consists of small connected components.

Lemma 4.5. Lpost is an LLL with bad event probability bound p and dependency degree d.

Proof. The dependency degree of the LLL is upper bounded by the d in Definition 4.2.
Let ϕ be the assignment of the variables of Step 1. Let E ∈ Bpost be an arbitrary event.

If assoc(E) holds under ϕ, then vbl(E) ⊆ Vpost and we obtain Pr(E | ψpre) = Pr(E) ≤ p by
Definition 4.2.

If assoc(E) is avoided under ϕ we obtain Pr(E | ψpre) ≤ p by the definition of the risk (see
Definition 4.1), as ψpre ∈ Respect(assoc(E)) and assoc(E) testifies the risk p.

Note that the statement in Lemma 4.5 holds “deterministically”, that is, regardless of the
outcome of the random choices in Step 1 of the algorithm. LetW = {v ∈ V |ℓ−1(v)∩(Vpost∪Bpost) 6=
∅} be the set of nodes that have one of their events/variables participating in the post-shattering
phase. Further, let W ′ = {v ∈ V : distG(v,W) ≤ ν} be the nodes that are in distance at most ν
from W .

We obtain the following bounds for events, variables, and nodes to be part of the post-shattering.

Lemma 4.6. The following bounds hold.

• For each event E ∈ B we have Pr(E ∈ Bpost) ≤ p · d2 ,

• For each variable x ∈ V we have Pr(x ∈ Vpost) ≤ p · d2 · (d+ 1) ,

15

• For each node v ∈ V (G) we have Pr(v ∈W) ≤ p · d2 · (d+ 1) · l ,

• For each node v ∈ V (G) we have Pr(v ∈W ′) ≤ p · d2 · (d+ 1) · l ·∆ν.

For distinct E and E ′ the events E ∈ Bpost and E ′ ∈ Bpost are independent if distH(E , E
′) > 1. For

a node v the event whether it is contained in W or W ′ only depends on the randomness at nodes
v′ with distG(v, v

′) ≤ 5ν and distG(v, v
′) ≤ 6ν, respectively.

Proof Sketch, formal proof thereafter. Each event or variable participating in the post-shattering
phase has some event E in its vicinity for which assoc(E) holds after the initial sampling. Pr(assoc(E))
is bounded by p due to the bounded risk. The lemma follows with several union bounds over the
respective sets of events and variables in multiple hop distance neighborhoods.

Proof of Lemma 4.6. Define the following sets of events and variables:

E0 = {E ∈ B : assoc(E) holds under ϕ}, V0 =
⋃

E∈X0

vbl(E), (2)

E1 = {E ∈ B \ E0 : vbl(E) ∩ V0 6= ∅}, V1 =
⋃

E∈X1

vbl(E) \ V0, (3)

E2 = {E ∈ B \ (E0 ∪ E1) : vbl(E) ∩ V1 6= ∅} . (4)

Observe that the set E0 consists of all events that retract a variable in the first step of retractions
and V0 contains all the retracted variables. E1 contains those events that are not contained in E0

but depend on a retracted variable. The events in E1 cause the retraction of their white variables
in the second round of retractions. The set V1 consists of the variables that are retracted in that
step and E2 contains all events that are neither in E0 nor in E1 but are adjacent to a retracted
variable. Altogether E0∪E1∪E2 contains all events participating in the post-shattering phase and
V0 ∪ V1 contains all variables participating in the post-shattering phase.

Fix an arbitrary event E . By Definition 4.2, the probability that E is contained in E0 is at most
p. Furthermore, E cannot be contained in E0∪E1∪E2 if none of the events that are within distance
at most 2 in the dependency graph HL—note that this is the dependency graph of the original LLL
and not the LLL in the post-shattering phase—are contained in E0. There are at most d2 such
events, and with a union bound over we obtain Pr(E ∈ Bpost) = Pr(E ∈ E0 ∪ E1 ∪ E2) ≤ d2p.

Fix an arbitrary variable x ∈ V. In order for x ∈ Vpost to hold, one of its dV adjacent events
needs to participate in Bpost. We obtain Pr(x ∈ Vpost) ≤ p · d2 · dV ≤ d2(d+ 1) with a union bound
over these events.

Fix an arbitrary node v ∈ V . For v ∈ W to hold, one of its l(v) events/variables needs to be
contained in Bpost ∪ Vpost. We obtain Pr(v ∈ W) ≤ p · l(v) · d2 · dV ≤ p · l · d2 · dV with a union
bound over all these events/variables. Similarly, v ∈ W ′ only holds if there is a node u ∈ Nν(v)
with u ∈ W . We obtain Pr(v ∈ W ′) ≤ p · l · d2 · dV ·∆ν with a union bound over the ∆ν nodes in
Nν(v).

Note that the event (E ∈ Bpost) only depends on the random choices of variables of events in
distance at most 2 in H. Thus, (E ∈ Bpost) and (E ′ ∈ Bpost) for events E , E

′ depend on distinct sets
of variables if distH(E , E

′) > 4.
For a node v ∈ V the event (v ∈W) holds if one of the events/variables in ℓ−1(v) participate in

Vpost ∪ Bpost. For a variable x ∈ ℓ−1(v), the longest dependency chain is that x ∈ vbl(E1), where E1
cause a retraction of x in the second round of retractions, and E1 cause the retraction, as some other
event E2 retracted a variable y ∈ vbl(E1) because E2 was not avoided under the initial assignment ϕ
of its variables vbl(E2). Let z ∈ vbl(E2). Then, the event (v ∈ W) may depend on the randomness

16

of z, that is, the largest distance is at most dist(v, ℓ(z)) ≤ 4ν. For an event E a similar reasoning
upper bounds the dependence to 5ν. For v ∈ W ′, this distance increase by an additive ν by the
definition of W ′ = Nν(W).

To obtain the bounds in the lemma we use that d ≥ dV − 1 as all events incident to a variable
are dependent.

We obtain that w.h.p. each connected component in the dependency graph of the LLL in the
post-shattering graph contains few events, that is, the connected components of H[Bpost] are small.
This is sufficient for the post-shattering in the LOCAL model as small locality ν implies that we
can simulate any algorithm on these small components efficiently and in parallel in G.

In the CONGEST model, we require stronger guarantees. Observe, that in an LLL instance with
load l a vertex can simulate up to l events/variables and it may be that these are not dependent
on each other. So, even though the components in the dependency graph of the LLL in the
post-shattering phase may be small, it may be that their projection via ℓ to the communication
network may result in huge connected components of G. For an efficient post-shattering phase, we
require that also the projections to the communication network remain shattered, as we prove in
Lemma 4.8.

Observe that two events in the dependency graph HLpost of Lpost are connected by an edge if
they share a variable in Vpost. So, HLpost ⊆ H[Bpost] where HLpost does not contain an edge {E , E}
of H[Bpost] if all variables in vbl(E) ∩ vbl(E ′) already have a value in ψpre.

Lemma 4.7 (shattering). If p ≤ d−22 holds, then with high probability each connected component
of HLpost ⊆ H[Bpost] contains at most O(d8 · log n) nodes.

If p < (d2 · dV · l ·∆ν)−1 ·∆−(4+12ν) holds, then with high probability the graph G[W ′] consists
of connected components of size O(log n ·∆6ν).

Proof. By Lemma 4.6 and the shattering Lemma A.3 (with c3 = 2, c2 = 4, c1 = 21), we obtain that
with high probability in n the connected components of H[Bpost] are of size at most O(log n · d8) if
p ≤ d−22 holds. This high probability guarantee depends on the randomness of Step 1.

By Lemma 4.6 and the shattering Lemma A.3 (with c3 = 2, c2 = 6ν, c1 = 4 + 24ν), we obtain
that with high probability in n the connected components of G[W ′] are of size at most O(log n·∆12ν)
if Pr(v ∈W ′) = p(d2 · (d+ 1) · l ·∆ν) ≤ ∆−c1 holds, only using randomness of Step 1.

Lemma 4.8. The projection of each connected component of H[BLpost] via ℓ, including all incident
variables in VL of the events in BLpost , is contained in a single connected component of G[W ′].

Proof. Assume for contradiction that there are two nodes w1, w2 in different connected components
of G[W ′] that simulate dependent events E1, E2 of Lpost. By the definition of Lpost we obtain that
w1, w2 ∈ W . Let x ∈ vbl(E1) ∩ vbl(E2). By the locality of ℓ, we obtain d(wi, ℓ(x)) ≤ ν for i = 1, 2.
But this would imply that ℓ(x) is in the same connected component of G[W ′] as wi for both i = 1
and i = 2, which is a contradiction. The same holds for all variables of these events.

Theorem 4.4 follows by plugging all lemmas in this section together, using that the LLL is
simulatable for the algorithm’s CONGEST implementation and verifying that the bound on the
error probability p in Theorem 4.4 is sufficient to actually apply Lemma 4.7.

Proof of Theorem 4.4. Step 1 and the retractions can be implemented in O(ν) rounds in the
LOCAL model. In the CONGEST model, Step 1 and the first round of retractions can be im-
plemented in poly log log n rounds if (L, G, ℓ) is simulatable. More detailed with the first primitive
of Definition 2.3, node ℓ(E) can test whether assoc(E) holds (note that we extended the definition

17

of simulatability to associated events, see Definition 4.2) and via the second primitive respective
nodes can send a retract command to the respective variables. the first and second primitive in).
The second round of retractions is implemented as follows. First, each event determines whether
it has a retracted variable by the aggregation primitive. Each retracted variable sends out a bit
0, each variable with a value 6= ⊥ sends out the bit 1, and these are combined with the minimum
operator. Thus, for each event E ∈ B the node ℓ(E) can determine whether it has a retracted
variable after the first round of retractions. If this is the case, the event sends the bit 0 to all
its variables indicating that white variables should retract their value. Note that these commands
can be combined (formally aggregated via the min operator) if a variable gets that retraction com-
mand from multiple of its events. With similar usage of these primitives for each event E ∈ B the
node ℓ(E) can determine whether the event E should participate in the post-shattering phase, i.e.,
whether there is some x ∈ vbl(E) with ϕpre(x) = ⊥.

At the end of the algorithm, all events in B are avoided under ϕ for the following reasons. Let
E ∈ B and let S = vbl(E) ∩ Vpost the variables of the event whose assignment is computed in the
post-shattering phase. If S = ∅, then assoc(E) is avoided under ψpre and we have ψ(x) = ψpre(x) for
all x ∈ vbl(E). Then E is avoided under ϕ as E ⊆ assoc(E) holds. If S 6= ∅, the assignment of the
variables in S in ψpost together with ψpre avoids the event E by the definition of the corresponding
event in Bpost.

Lemma 4.5 shows that Lpost indeed is an LLL with dependency degree d and upper bound p on
the bad event probability.

The application of Theorem A.2 and Lemma 6.1 for solving Lpost in the post-shattering phase is
almost identical to the one in the proof of Theorem 5.2. The respective lemmas need to be replaced
with the lemmas of this section and Equation (6) needs to be replaced with

p < d−(4+cl)−(4c+12cν) log logn ≤ (d2 · (d+ 1) · l)−1∆−(4+12ν) , (5)

which holds due to the bound on p from Theorem 4.4 and justifies that we can use Lemma 4.7.

5 Disjoint Variable Set LLLs

Definition 5.1 (Disjoint variable set LLLs). Consider a set V of random variables that is the
union of two disjoint sets of variables Vi, i = 1, 2, and some set of events E defined over V. This is
a disjoint variable set LLL with bad event probability bounded by p if each event E = E1 ∩ E2 is
the conjunction of two events E1, E2 where vbl(Ei) = Vi and Pr(Ei) ≤ p holds for i = 1, 2.

Note that for an event E = E1 ∩ E2 it is sufficient to avoid E1 or E2 to avoid the event E . In the
case of a disjoint variable set LLL in the CONGESTmodel, we extend the definition of simulatability
and require that the event E1 can be tested in poly log log n rounds on any partial assignment ϕ
with ⊥ /∈ ϕ(vbl(E1)). The rest of this section is devoted to proving the following theorem.

Theorem 5.2. There are randomized LOCAL and CONGEST algorithms that in poly log log n
rounds w.h.p. solve any disjoint variable set LLL of constant locality ν with dependency degree
d ≤ poly log n and bad event upper bound p. The LOCAL algorithm requires p < d−14 and the
CONGEST algorithm requires p < d−(2+cl)−(4c+12c∆ν) log logn, l ≤ dcl , ∆ ≤ logc n for constants
cl, c∆ ≥ 1, and simulatability.

Our algorithm first samples all variables in V1. Events not avoided by the assignment to their
variables in V1 join the post-shattering phase together with their variables in V2. The benefit is
that connected components in the post-shattering are of polylogarithmic size which allows for faster

18

algorithms, both in the LOCAL model (Theorem A.2) and in the CONGEST model under certain
stronger LLL criteria (Section 6).

Algorithm: Consider an LLL L = (V,B, p, d) as in Definition 5.1.

• Initial sampling (Step 1): Sample all variables in V1 according to their distribution.

Let ψpre be the resulting partial assignment.

• Post-shattering: Set up the following LLL instance Lpost = (Vpost,Bpost, ℓ) consisting of the
following variables and (marginal) events.

– Bad Events: Bpost = {(E|ψpre) : E ∈ B,Pr(E | ψpre) > 0}

– Variables: Vpost = V2 ∩ ∪E∈Bpostvbl(E), with their respective original probability distri-
bution. The variables in V2 \ Vpost are not part of the postshattering phase; their values
are set arbitrarily.

– ℓpost(x) = ℓ(x) for all x ∈ Vpost and ℓpost(E|ψpre) = ℓ(E) for all (E|ψpre) ∈ Bpost. To
simplify the notation, we refer to ℓpost as ℓ.

We compute an assignment ψpost of the variables in Vpost that avoids all events in Bpost. In
LOCAL this is done via Theorem A.2 and in CONGEST we use the algorithm from Lemma 6.1.

• Return ψ = ψpre ∪ ψpost .

Analysis of the post-shattering phase. We first show that the LLL formulation in the post-
shattering phase indeed is an LLL. Afterwards, we show that with high probability the dependency
graph of this LLL consists of small connected components. In the CONGEST model, we actually
require a stronger statement, that is, we require that the projection of the post-shattering LLLs
to the communication graph only consists of small components. To simplify the notation in the
proofs, we identify the events E ′ = (E|ψpre) in Bpost with their corresponding event E ∈ B.

Lemma 5.3. Lpost is an LLL with bad event probability bound p and dependency degree d.

Proof. The dependency degree of L is upper bounded by the d in Definition 5.1, and thus so is the
dependency degree of Lpost. By Definition 5.1, we obtain Pr(E ′) = Pr(E | ϕpre) ≤ p for any event
E ′ = (E | ϕpre) in Bpost.

Note that the statement in Lemma 5.3 holds “deterministically”, that is, regardless of the
outcome of the random choices in Step 1 of the algorithm.

Let W = {v ∈ V |ℓ−1(v) ∩ (Vpost ∪ Bpost) 6= ∅} be the set of nodes that have one of their
events/variables participating in the post-shattering phase. Further, letW ′ = {v ∈ V : distG(v,W) ≤
ν} be the set of nodes within distance ν from W .

We obtain the following bounds for events, variables, and nodes to be part of the post-shattering.

Lemma 5.4. The following bounds hold.

• For each event E ∈ B we have Pr(E ∈ Bpost) ≤ p ,

• For each variable x ∈ V we have Pr(x ∈ Vpost) ≤ p · (d+ 1) ,

• For each node v ∈ V (G) we have Pr(v ∈W) ≤ p · (d+ 1) · l ,

19

• For each node v ∈ V (G) we have Pr(v ∈W ′) ≤ p · (d+ 1) · l ·∆ν.

For distinct E and E ′ the events E ∈ Bpost and E ′ ∈ Bpost are independent if distH(E , E
′) > 1. For

a node v the event whether it is contained in W or W ′ only depends on the randomness at nodes
v′ with distG(v, v

′) ≤ 2ν and distG(v, v
′) ≤ 3ν, respectively.

Proof. Fix an arbitrary event E ∈ B. By Definition 5.1, the probability that E is contained in Bpost

is at most p. Fix an arbitrary variable x ∈ V. In order for x ∈ Vpost to hold, one of its dV adjacent
events needs to participate in Bpost. We obtain Pr(x ∈ Vpost) ≤ p · dV with a union bound over
these events.

Fix an arbitrary node v ∈ V . For v ∈ W to hold, one of its l(v) events/variables needs to be
contained in Bpost ∪ Vpost. We obtain Pr(v ∈W) ≤ p · l(v) · dV ≤ p · l · dV with a union bound over
all these events/variables. Similarly, v ∈ W ′ only holds if there is a node u ∈ Nν(v) with u ∈ W .
We obtain Pr(v ∈W ′) ≤ p · l · dV ·∆ν with a union bound over the ∆ν nodes in Nν(v).

The event (E ∈ Bpost) only depends on the random choices of the variables in vbl(E)∩V1. Thus,
(E ∈ Bpost) and (E ′ ∈ Bpost) for events E , E

′ depend on distinct sets of variables if distH(E , E
′) > 1.

For a node v ∈ V the event (v ∈ W) holds if one of the events/variables in ℓ−1(v) participate
in Vpost ∪ Bpost. For a variable x ∈ ℓ−1(v), this only depends on the outcome of all variables in
vbl(E) for each event E with x ∈ vbl(E). These variables are necessarily simulated by a node in
distance at most 2ν. For an event E ∈ ℓ−1(v), whether the event E ∈ Bpost holds only depends
on the variables in vbl(E) ∩ V1, which are contained in Nν(v). For the last claim, this distance
increases by an additive ν by the definition of W ′ = Nν(W).

To obtain the bounds in the lemma we use that d ≥ dV − 1 as all events incident to a variable
are dependent.

For intuition regarding the next lemma, we refer to the text before Lemma 4.7. Observe that
two events in the dependency graph HLpost of Lpost are connected by an edge if they share a variable
in Vpost. So, HLpost ⊆ H[Bpost] holds.

Lemma 5.5 (shattering). If p ≤ d−14 holds, then with high probability each connected component
of H[Bpost] contains at most O(d4 · log n) nodes.

If p < ((d + 1) · l)−1∆−(4+12ν) holds, then with high probability the graph G[W ′] consists of
connected components of size O(log n ·∆6ν).

Proof. By Lemma 5.4 and the shattering Lemma A.3 (with c3 = 2, c2 = 1, c1 = 9), we obtain that
with high probability in n the connected components of H[Bpost] are of size at most O(log n · d2) if
p ≤ d−14 holds. This with high probability guarantee depends on the randomness of Step 1.

By Lemma 5.4 and the shattering Lemma A.3 (with c3 = 2, c2 = 3ν, c1 = 4 + 12ν), we obtain
that with high probability in n the connected components of G[W ′] are of size at most O(log n∆6ν)
if Pr(v ∈ W ′) ≤ p((d + 1) · l ·∆ν) ≤ ∆−c1 holds. This high probability guarantee depends on the
randomness of Step 1.

The proof of the following lemma is identical to the proof of Lemma 4.8.

Lemma 5.6. The projection of each connected component of H[BLpost] via ℓ, including all incident
variables in VL of the events in BLpost , is contained in a single connected component of G[W ′].

Proof of Theorem 5.2. First note that Step 1 can be executed in poly log log n rounds in LOCAL if
the event/variable assignment (L, G, ℓ) has constant locality. In the CONGEST model, it can be
done in poly log log n rounds if the LLL is simulatable. Note, that each event E = E1 ∩ E2 can also

20

test in poly log log n rounds whether E1 is avoided after Step 1 as for disjoint variable set LLLs this
is required from the simulatability definition (see the line after Definition 5.1).

At the end of the algorithm each event E = E1 ∩ E2 ∈ B is avoided under ϕ for as either E1 is
avoided under ψpre which agrees with ϕ, or E2 is avoided under ψpost which also agrees with ϕ.

Lemma 5.3 shows that Lpost indeed is an LLL with dependency degree d and upper bound p on
the bad event probability.

In the LOCAL model we solve Lpost as follows. Lemma 5.5 shows that the connected components
of H[Bpost] are of size O(d4 log n) if p < d−14. As the dependency graph of HLpost is a subgraph
of H[Bpost] its connected components are of the same size. Now, we can independently apply
Theorem A.2 to solve each of these instances in parallel in poly logN = poly log log n, where each
round of communication inHLpost can be simulated in O(ν) rounds in the communication network G.

In the CONGEST model, we solve Lpost as follows. Formally, set up a new LLL L′
post in which

we append Lpost by the variables Vpost,passive =
⋃

E∈Bpost
vbl(E) \ Vpost. Also, we set ℓ(x) = ℓ(x)

for all x ∈ Vpost,passive. Note that all these variables already have an assignment in ψpre. Due to
∆ ≤ logc n, l ≤ dcl , dV ≤ d and the condition on p in Theorem 5.2, we obtain

p < d−(2+cl)−(4c+12cν) log logn ≤ ((d+ 1) · l)−1∆−(4+12ν) . (6)

In other words, the conditions of Lemma 5.5 are met for sufficiently large n. Thus, the lemma
shows that the connected components of G[W ′] are of size N = O(log n∆6ν) = O(log6cν+1 n)
and the same holds for each connected component of H[Bpost]. By Lemma 5.6, we also have
that the projection via ℓ of each connected component of H[Bpost] is contained in a connected
component of G[W ′] (this includes the assignment of Vpost,passive to nodes in G). Hence, we can
apply Lemma 6.1 in parallel on all components of L′

post with the partial assignment ψpre restricted
to variables incident to events in Bpost. This solves L

′
post in poly logN = poly log log n rounds and be

correct with probability at least 1−2bandwidth = 1−n−2, if bandwidth = 2 log n. In the application of
Lemma 6.1, we set λ = 10 log log n, which satisfies the condition on the LLL criterion in Lemma 6.1
as p < d−(2+cl)−(4c+12cν) log logn ≤ p−λ. As λ = Ω(logN), the algorithm runs in poly log log n rounds
by Corollary 6.2. This also solves Lpost.

6 Efficient Post-shattering in CONGEST

In this section, we devise CONGEST algorithms for the LLL subinstances to be solved after shat-
tering certain LLLs.

Known solutions for LLL in the CONGEST model cannot make use of the small component size
unless d and ∆ are at most poly log log n [MU21, HMN22]. Thus, we develop a novel algorithm
to efficiently solve LLLs on small components in poly log log n rounds. Recall that, intuitively, an
LLL instance is simulatable if one can (a) evaluate the status of each event in poly log log n rounds
(note the variables of an event might be simulated by a node that is a few hops from the node
that simulates the event), and (b) nodes can determine (in poly log log n rounds) the influence on
their simulated bad events by partial assignments of variables. There are additional conditions to
the definition of simulatability taking into account some allowed pre-processing and specifying the
bandwidth that is allowed for the respective steps.

The goal of this section is to prove the following lemma that we need in the post-shattering
phases of our algorithms.

Lemma 6.1. Let λ > 0 be a (possibly non-constant) parameter. There is a CONGEST(bandwidth)
algorithm for LLL instances L = (V,B, ℓ) with dependency degree is d and for which Pr(E | ψ) < d−λ

21

holds for the marginal error probability of all events E ∈ B where ψ can be any partial assignment
of the variables in V.

The algorithm requires that the locality ν of the LLL instances is constant and that each con-
nected component of G[Nν(ℓ(V ∪ B))] is of size at most N . It works with an ID space that is
exponential in N . It requires that the LLL instance is simulatable and runs in poly log log n · log(N ·
l) +N2/λ · poly logN rounds where l is the load of the LLL. The error probability is upper bounded
by 2−bandwidth.

Corollary 6.2. If λ = Ω(logN), x ≤ poly log log n, l ≤ poly log log n, and bandwidth = Ω(log n),
the instances as in Lemma 6.1 can be solved in poly log log n rounds with high probability in n.

6.1 Network Decomposition

A weak distance-k (C, β)-network decomposition with congestion κ is a partition of the vertex set
of a graph into clusters C1, . . . , Cp of (weak) diameter ≤ β, together with a color from [C] assigned
to each cluster such that clusters with the same color are further than k hops apart. Additionally,
each cluster has a communication backbone, a Steiner tree of radius ≤ β, and each edge of G is
used in at most κ backbones. For additional information on such decompositions, we refer the
reader to [MU21, GGR21]. For the sake of our proofs, we only require that such decompositions
can be computed efficiently (Theorem 6.3) and that one can efficiently aggregate information in all
clusters of the same color in parallel in time that is essentially proportional to the diameter β (see
Lemma A.4 for the precise statement).

Theorem 6.3 ([MU21]). For any (possibly non constant) k ≥ 1 and any λ ≤ logN there is a
deterministic CONGEST algorithm that, given a graph G with at most N nodes and unique IDs
from an exponential ID space, computes a weak (λ, k · N1/λ log3 n)-network decomposition of Gk

with congestion κ = O(logN ·min{k,N1/λ · log2N}) in O(k ·N2/λ ·λ · log6N ·min{k,N1/λ log2N})
rounds.

While we state our results in terms of general λ, the most natural invocation of Theorem 6.3 is
λ = logN and constant k, in which case it computes a weak (logN, log3N)-network decomposition
of Gk with congestion O(logN) in O(log7N) rounds.

There are algorithms to compute similar network decompositions that are more efficient than
the one in Theorem 6.3, e.g., in [GGH+23, MPU23]. However, as stated in their results, they require
Ω(logN · log logN) = ω(logN) colors, and as the number of colors factors into the LLL criterion
of the instances we can solve and for the sake of simplicity, we refrain of using their algorithms in
a black box manner.

6.2 The LLL algorithm of Chung, Pettie, Su

In the LOCAL model there is a simple O(log n)-round randomized distributed algorithm for LLLs
with epd2 < 1 and constant locality [CPS17].

It is important for our paper that Algorithm 1 can be implemented in the CONGEST model if
natural primitives are available. These primitives are the evaluation of events and the computation
of local ID-minima (in the dependency graph) of a subset of the events for an arbitrary ID assign-
ment (that may even be adversarial). The algorithm is used as a subroutine in our post-shattering
solution.

Theorem 6.4 ([CPS17]). Suppose Algorithm 1 is run for O(log1/epd2 |B|) iterations on an LLL

L = (V,B) satisfying epd2 < 1. Then, with probability at least 1−1/|B|, it computes an assignment

22

Algorithm 1 The simple LLL algorithm from [CPS17] (Theorem 6.4).

Initialize a random assignment of the variables
Let F be the set of bad events under the initial assignment
While F 6= ∅

Let I =
{

A ∈ F : ID(A) = min{ID(B)|B ∈ NHL
(A)}

}

Resample vbl(I) = ∪A∈Ivbl(A)
Let F be the set of bad events under the current assignment

that avoids all bad events. The algorithm requires events to be equipped with identifiers that are
unique within their connected component of the dependency graph.

6.3 Efficient Post-shattering in CONGEST (details)

To devise an efficient CONGEST post-shattering algorithm, we decompose each small component
into small clusters via the network decomposition algorithm from Theorem 6.3. Then, the objective
is to iterate through the collections of the decomposition and when processing a cluster we want to
fix all variables in that cluster. When doing so we need to ensure that the influence on (neighboring)
clusters processed in later stages of the algorithm is not (too) negative. To efficiently measure and
limit this effect to a d2-factor increase in the marginal probability of each remaining event, we
set up a new LLL for each cluster that ensures just that condition. An application of Markov’s
inequality shows that the probability of the marginal probability to increase more than a factor d2

if a subset of the variables of an event is sampled is at most 1/d2 (see Claim 6.5). Implementing
all required primitives efficiently needs the simulatability of the LLL.

In Sections 4 and 5, we want to use Lemma 6.1 to exploit that the post-shattering phase consists
of several small connected components.

Proof of Lemma 6.1. First, we use Theorem 6.3 to compute a network decomposition of the com-
munication network G where the distance between two clusters of the same color is strictly larger
than 2ν (recall, that ν = O(1) is the locality of event/variable assignment ℓ). We instantiate the
theorem such that we obtain λ collections, weak diameter O(N1/λ log3N) and congestion O(logN).
The algorithm runs in O(λ ·N2/λ log6N) rounds as ν is constant. This is obtained by running the
algorithm on all connected components of G[Nν(ℓ(V ∪ B))] in parallel.

To compute an assignment of V that avoids all events in B, we start with an initial partial
assignment ϕ0 with all variables unassigned and then iterate through the λ collections of the
network decomposition. When processing the nodes Vi in collection i, we permanently assign the
variables in Vi = V ∩ ℓ−1(Vi). Let ϕi be the partial assignment after processing the i-th collection.
The invariant that we maintain for each event E ∈ B is that after processing the i-th collection we
have Pr(E | ϕi) ≤ p · d2i. Initially, the invariant holds for ϕ0 = ψ (ψ from the lemma statement) by
the upper bound p on bad event probabilities of events in B. Let ϕ = ϕλ be the final assignment
in which each variable of V has a value 6= ⊥. We obtain that Pr(E | ϕ) ≤ pd2λ < 1, since p < d−2λ.
Since all variables have been fixed by ϕ, this means that the event E is avoided under ϕ.

Next, we detail the process for a single collection, that is, how to find the partial assignment ϕi,
given ϕi−1. Note that throughout the algorithm all partial assignments are known in a distributed
manner, that is, for a variable x ∈ V, the node ℓ(x) knows the value of x (or ⊥) in the current
partial assignment. Also observe that for each variable x ∈ V node ℓ(x) knows whether x ∈ Vi
holds. Let Bi be the set of events E with vbl(E)∩Vi 6= ∅. By using the aggregation primitive (here,

23

we only require a broadcast) from the variables in Vi to the events in Bi nodes learn whether their
events are contained in Bi. We define the following LLL Li for collection i.

• VLi set of variables: Vi with their original distribution.

• BLi set of bad events: For each E ∈ Bi there is an event E ′ that holds on an assignment ψ
of Vi if

Pr(E | ψ ∪ ϕi−1) ≥ d2 Pr(E | ϕi−1),

• ℓLi(x) = ℓ(x) for all x ∈ VLi and ℓLi(E
′) = ℓ(E) for all E ′ ∈ BLi .

Claim 6.5. Li is an LLL with error probability at most 1/d2 and dependency degree d.

Proof. Consider an event E ′ ∈ BLi and let E ∈ BL be the corresponding event of L. For an
assignment ψ of VLi , let pψ = Pr(E | ψ ∪ ϕi−1). Note that formally pψ is a random variable over
the randomness of the variables in VLi. For each assignment of these variables pψ is a value in
[0, 1]. Hence, we obtain EVLi

[pψ] = Pr(E | ψ ∪ ϕi−1) =: µ, where the subscript indicates that the
randomness of the expectation is only for the variables in VLi . By Markov inequality, we have
Pr(E ′) = Pr(pψ ≥ d2µ) ≤ 1/d2.

We use the following claim (sometimes implicitly) throughout the proof.

Claim 6.6. Each connected component of the dependency graph of HLi is contained in a connected
component of G[Nν(ℓ(V ∪ B))].

Now, we run k = bandwidth parallel instances of the LLL algorithm of [CPS17] with the LLL Li.
Each instance runs for O(log(N · l)) iterations (note that each connected component of Gν [ℓ(V ∪B)]
contains at most N ·l events); the precise discussion of the total runtime of executing these instances
and the remaining parts of the algorithm is deferred to the end of the proof. As a result we obtain
k assignments ψ1, . . . , ψk of Vi. For j ∈ [k], we say that an assignment ψj is correct for an event
E ′ ∈ BLi if E

′ is avoided under ϕj .
To define ϕi from the assignments ψ1, . . . , ψk, let us define the following notation for each cluster

C with color i in the network decomposition. Let VC = Vi∩ ℓ
−1(C) and BC = {E ∈ Bi : vbl(E)∩VC 6=

∅}. For two distinct clusters C and C′ of the i-th collection we obtain that VC ∩ VC′ = ∅ and
BC ∩ BC′ = ∅ as the cluster separation is strictly larger than 2ν. By the properties of Algorithm 1
(and using Claim 6.6), each ψj is correct for all events in BC with probability ≥ (1−1/(N · l)) ≥ 1/2.
Thus, with probability at least 1 − 1/2k there is an j∗C ∈ [k] such that ψj∗

C
is correct for all events

of BC . Each node holding an event of Li determines which assignments are correct for its event.
For each cluster C in parallel the nodes in ℓLi(BC) agree on an index j∗C such that assignment ψj∗

C

is correct for all events in BC; let ψ̃j∗
C
denote the restriction of this assignment to VC . Different

clusters may decide on different indices. Lastly, we set ϕi = ϕi−1 ∪
⋃

C has color i ψ̃j∗C . The partial
assignment ψi is well-defined as each variable of Vi appears in exactly one cluster.

Claim 6.7. The invariant Pr(E | ϕi) ≤ p · d2i holds.

Proof. For each event E /∈ Bi, the claim follows as none of the variables in vbl(E) change their value
when processing the i-th collection, that is, we obtain Pr(E | ϕi) = Pr(E | ϕi−1) ≤ p ·d2(i−1) ≤ p ·d2i.

For each event E ∈ Bi, there is a cluster C with color i for which E ∈ BC. The partial assignment
ψ̃j∗

C
avoids all events in BC . As Pr(E | ϕi−1) ≤ p · d2(i−1) holds, the definition of the avoided events

in BC ⊆ Bi implies Pr(E | ψ ∪ ϕi−1) ≥ d2 Pr(E | ϕi−1) ≤ pd2i .

24

Before we run the k parallel instances of Algorithm 1, we compute a locally unique ID ι(v) ∈
{1, . . . , N} for each node v ∈ ℓLi(Bi), for each cluster C of color i. Then, for each event E ∈ Bi
assign a locally unique ID ι(E) = (ι(ℓLi(E), j) ∈ {1, . . . , N}2 where j is the index of E among the
events simulated by node ι(ℓLi(E) (according to an arbitrary ordering of these events). These IDs
are used to compute the local minima of non-avoided events in the simulation of Algorithm 1. As
the distance between clusters of the same color is strictly larger than 2ν, these IDs are unique within
the connected components of the dependency graph of HLi , which tailors them sufficiently for the
simulation of Algorithm 1. Assigning these locally unique IDs can be done in O(N1/λ poly logN)
rounds by using the Steiner tree of the clusters.

We next, bound the runtime of the whole process and show that all steps can be executed.
To improve the readability let x = poly log log n be the number of rounds from Definition 2.3.
Recall, that nodes know whether their simulated variables and events are contained in Vi and
Bi, respectively. As the LLL L is simulatable, we only need to send k · x bits to run one round
of each of the k instances of [CPS17]. In more detail, as the new IDs that we computed are
represented with bit strings of length O(logN), the pre-processing phase of Definition 2.3 requires
x·IDbitLength = x·poly logN rounds of CONGEST(bandwidth). Then Algorithm 1 applied to Li can
be implemented with the operations in the second part of Definition 2.3. More detailed, in x rounds,
for each event E , the corresponding nodes can determine whether Pr(E | ψ∪ϕi−1) ≥ d2 Pr(E | ϕi−1)
holds or not, where ψ is an assignment of the variables in Vi. Also, we can compute a set of
local minimum IDs I (in the dependency graph HLi) of events E for which this is not the case by
using the broadcast and aggregation primitives. Let Z be the set of non-avoided events in some
iteration. Each event E ∈ Z broadcasts its locally unique ID ι(E) to all variables in vbl(E) ∩ Vi.
For a variable x ∈ Vi let c(x) = minE∈Z ι(E). Then the variables use the aggregation primitive to
send the smallest ID that they have received to the events that contain them, that is, each event E
receives c(E) = minx∈vbl(E)∩Vi

c(x). The set I = {E : c(E) = ι(E)} is consists of locally minimum IDs
of HLi [Z], as required. Lastly, events in I use the broadcasting function to inform their respective
variables such that they can re-sample themselves for the next iteration of Algorithm 1.

Thus, simulating one round of all k instances of Algorithm 1 in parallel requiresO(k·x/bandwidth) =
x rounds as bandwidth = k. Hence, running all instances for O(logN) rounds takes only x · log(N · l)
rounds. The simulatability also implies that nodes in ℓLi(BLi) can check which events hold in which
of the k assignments ψ1, . . . , ψk in x rounds.

Agreeing on the index j∗C in cluster C can be done efficiently as follows: Each node v ∈ ℓLi(BC)
holds a bit string of length k = bandwidth in which the j-th bit equals 1 if and only if all its events,
i.e., the events in Bi ∩ ℓ

−1
Li

(v), are avoided in ψj. All nodes in ℓLi(BC) agree on the index j∗C in
time linear in the cluster’s weak diameter (ignoring congestion between different clusters for now)
by computing a bitwise-AND of the bitstrings.

When simulating the k instances of Algorithm 1, there is no congestion between clusters that
are processed simultaneously as their distance in the graph is strictly greater than ν. Agreeing on
the assignment of the variables within one cluster is done on the Steiner tree of the cluster, where
each edge is contained in at most one tree of clusters of the same color. Since also the clusters’
weak diameter is of size poly logN and as we have O(logN) colors classes the whole process runs
in x · log(N · l) + poly logN rounds, and the claim follows as x = poly log log n.

7 Applications and Bounding Risks

Section 7.1 serves as a warm-up. We sketch how to use our disjoint variable set LLL in order to
solve the slack generation problem. As this assumes that we have already solved the DSS problem,

25

the formal statement and proof appear are deferred to Section 8. In Section 7.2, we present several
techniques to bound the risk events and show that our framework solve all LLLs that can be solved
with the main LLL algorithm of [GHK18]. In Section 7.3 we bound the risk of several types of
binary LLLs and show that all LLLs that can be solved with the main LLL algorithm of [GHK18]
can be solved with out framework (in the LOCAL model).

7.1 Example of Disjoint Variable Set LLL: Slack Generation

Let us illustrate the usefulness of disjoint variable set LLLs by having a closer look at one example
that is important for our coloring results. Recall that the goal is to color some of the nodes of the
graph such that each node v receives some slack, that is, (at least) two of its neighbors w,w′ ∈ N(v)
are colored with the same color. A simple randomized algorithm to generate slack for such nodes
is to activate each node with a constant probability and then activated nodes select a random
candidate color. Then, the candidate colors are exchanged with their neighbors and a node gets
permanently colored with its candidate color if no neighbor tried the same color.

Algorithm 2 SlackGeneration

Input: S ⊆ V

1: Each node in v ∈ S is active w.p. 1/20
2: Each active node v samples a color rv u.a.r. from [χ].
3: v keeps the color rv if no neighbor tried the same color.

In Section 8, we prove the following lemma that bounds the probability that this process pro-
vides nodes with slack. Variants of this result have appeared numerous times [MR13, EPS15,
HKMT21]

Lemma 7.1 (Slack generation, Lemma 8.6 simplified). Let ∆s, χ be positive integers with χ ≥
∆s/10. Let S ⊂ V be a subset of nodes. Consider a node v ∈ V with at least m non-edges in
G[N(v) ∩ S]. Suppose that all nodes in S, as well as v, have at most ∆s neighbors in S. After
running SlackGeneration on S with color palette [χ], the slack of v is increased by Ω(m/χ), with
probability at least 1− exp(−Ω(m/χ)). This holds independent of random choices at distance more
than 2.

Lemma 7.1 immediately gives rise to an LLL for χ = ∆. Introduce a bad event Ev for each
node v of a graph that holds if v does not obtain slack. Then, for sparse ∆-regular graphs, that is,
graphs in which any node has Ω(∆2) non-edges in its neighborhood the probability that Ev holds
is upper bounded by p = exp(−Ω(∆)) and it only shares randomness with d = ∆4 events of other
nodes.

Consider a version of the slack generation problem where we are given two sets S1, S2 ⊆ V , such
that each node v has many non-edges in the graph induced by N(v) ∩ S1 and also in the graph
induced by N(v) ∩ S2. Observe that we can compute such sets by solving the DSS problem.

Given these sets, we introduce the event Ev = Ev,1 ∩ Ev,2 for each node v where for i = 1, 2
the event Ev,i is avoided if v receives slack from the coloring of the nodes in Si. So, translating
our algorithm for such LLLs into the language of this slack generation problem, we first execute
SlackGeneration for all nodes in S1. Then, each node v that did not get slack yet, together with
its neighbors in S2 goes to the post-shattering phase. Here, we exploit that connected components
are small and solve the slack generation problem for these nodes faster, e.g., by using Theorem A.2
in the LOCAL model or using Lemma 6.1 in the CONGEST model.

26

7.2 Techniques to Bound Risk

The objective of this section is to illustrate techniques for bounding risk. to show that all LLLs
that can be solved with the main LLL algorithm of [GHK18] can be solved with our framework.
This section does not reason simulatability for an efficient CONGEST implementation, which is
done elsewhere whenever these events are needed.

Often we are just interested in the variables whose value is black and we sometimes abuse
language and speak of these as sampled variables/nodes; hence we also speak of a sampling LLL.
We illustrate in this section a number of natural sampling problems that have LLL with low risk
and can therefore be handled with our method. As we can modify the domain and the sampling,
and we can combine criteria, this induces a space of solvable problems.

A property that appears frequently in sampling LLLs is that its bad events are monotone in the
sense that they either profit from having more nodes set to black or white respectively. Examples
are the events in the degree-bounded subgraph sampling and in the DSS problem discussed in the
introduction. Formally, monotone events are captured by the following definition.

Definition 7.2 (monotone events). An event E defined over a set of independent binary random
variables is color-favoring for color ∈ {black,white} if Pr(E | ψ) ≤ Pr(E | ϕ) holds for any ψ,ϕ with
ψ(x) ≤ ϕ(x) for each x ∈ vbl(E) (where color < ⊥ < color).

We also call an event monotone increasing (monotone decreasing) if it is black-favoring (white-
favoring). The following lemma is one of the core advantages of our binary LLL solver, compared
to using prior LLL algorithms (even when used in the LOCAL model).

Lemma 7.3 (No Risk Lemma). The risk of a monotone increasing event E is Pr(E) testified by
assoc(E) = E .

Proof. Let E be a monotone-increasing event. Then E itself testifies that the risk of E is at most
p. First, we trivially have Pr(E) ≤ p. We need to show that maxψ∈Respect(E){Pr(E | ψ)}

}

≤ p. Let
ψ ∈ Respect(E) be any promise retraction and let ϕ be a full assignment corresponding to ψ. By
definition of Respect(E), either all white variables are retracted (ϕ(x) ∈ {black,⊥}), or no black
variables are retracted. In the first case, ψ(x) ≤ ⊥ for all x ∈ vbl(E), hence Pr(E | ψ) ≤ Pr(E) ≤ p.
If no black variables are retracted, we have ψ(x) ≤ ϕ(x) for all x ∈ vbl(E). Hence, Pr(E | ψ) ≤
Pr(E | ϕ) = 0, where the last equality follows from the fact that ϕ does not satisfy E by definition
of Respect(E).

The issue is that LLLs that only consist of monotone increasing events are trivial (one can
simply set all variables to black to solve them) and the asymmetry in the aforementioned approach
(we only undo white variables in the second step of retractions) prevents us from dealing with
monotone decreasing events in the same manner simultaneously. Next, we present a general method
for bounding the risk, mostly originating from prior work (and not used in our applications).

Bounding the risk of general events. For completeness and to compare with prior work, we
first explain how the risk of an event can be bounded by the analysis of LLL process given in prior
work. The next few definitions and lemmas are reformulated in the language of this paper but
appear in a similar manner in [GHK18] and slightly differently already in [CPS17]. Afterward, we
discuss why these are helpful in general but unsuitable in the context of our efficient CONGEST
algorithms.

Consider some event E defined over some random variables vbl(E). Let q be a parameter. A
partial assignment ϕ of vbl(E) is q-dangerous if there exists some retraction ψ of ϕ such that

Pr(E | ψ) > q (7)

27

holds. Let Eq
danger

be the event that holds on all assignments that are q-dangerous. The following
lemma follows immediately from the definition of risk and Edanger.

Lemma 7.4. The risk of any event E is upper bounded by max{q,Pr(Eqdanger)} testified by Eqdanger.

As a result of Lemma 7.4 (applied with a suitable q = 1/poly∆), any LLL that can be solved
with the main LLL algorithm of [GHK18, Section 6] can also solved with our LLL solver in the
LOCAL model. Our algorithm is advantageous whenever one cannot easily bound Pr(Eqdanger), but
can instead use Lemma 7.3 to bound the risk.

In practice, it is highly non-trivial to derive upper bounds on Pr(Eqdanger). As an additional
tool Ghaffari, Kuhn, and Harris introduce another technical term, the fragility f(E) of an event
[GHK18, Definition 6.3].

Definition 7.5 (Fragility). Let E be an event on variables vbl(E) = {x1, . . . , xk} and let ϕ1, ϕ2

be two partial assignments with actual values for vbl(E) and ⊥ for other variables. For any vector
a ∈ {0, 1}k , define a new partial assignment ψa by ψa(xi) = ϕai(xi) for 1 ≤ i ≤ k and ψa(xi) = ⊥
for xi 6∈ vbl(E). Let EB be the event

EB =
∨

a∈{0,1}k

E occurs on assignment ψa

The fragility of E , denoted f(E), is the probability of EB when ϕ1 and ϕ2 are drawn independently,
according to the distribution of the variables in vbl(E).

In [GHK18, Proposition 6.4] they also show that if an event E has fragility f(E), then the
probability that Eqdanger holds is upper bounded by f(E)/q.

Lemma 7.6. The risk of an event E is at most max(f(E)/q, q).

While these are powerful tools they come with two issues for our purposes: (1) the fragility
and more general Pr(Eq

danger
) can be quite hard to analyze for involved LLL processes with multiple

dependencies such as DSS or the slack generation LLL, and (2) the associated event assoc(E) =
Eq
danger

cannot, in general, be evaluated on an assignment in the CONGEST model, as the respective
conditional probabilities of Equation (7) are unlikely to be computable without full information
about all variables, the local graph structure in a graph problem, etc., none of which are readily
available in the CONGEST model.

The prime monotone decreasing events that appear in the context of our CONGEST applications
are events that control the maximum degree into some subgraph. In contrast to the involved lemmas
above, it is easy to find a simple associated event. Alternatively, one could use a result from [GHK18,
Theorem 6.8] to bound the fragility and hence via Lemma 7.6 the risk.

Lemma 7.7. Consider a random variable X that is a sum of independent binary random variables.
For some threshold parameter x > 0, let Ex be the event that X > x holds. Then, the risk of Ex is
at most Pr(Ex/2) testified by Ex/2.

Proof. By definition, the risk testified by Ex/2 is given by

max
{

Pr(Ex/2), max
ψ∈Respect(Ex/2)

{Pr(E | ψ)}
}

.

To prove the lemma, take an arbitrary assignment ψ ∈ Respect(Ex/2). As ψ is a retraction of an
assignment on which Ex/2 was avoided at most x/2 of the variables in ψ are black. Let ψ′ be the
assignment obtained from ψ by setting all black variables to white. We obtain.

Pr(Ex | ψ) ≤ Pr(Ex/2 | ψ
′) ≤ Pr(Ex/2) ,

which proves the claim.

28

Note that monotone decreasing events, as in Lemma 7.7, do not rely on only white variables
being retracted in the second round of retractions (in fact, they prefer the white variables to stay).

The following lemma is useful to obtain upper bounds on the risk of combined events.

Lemma 7.8. Let E1 and E2 be events defined over the same set of independent random variables,
and suppose they have risk p1 and p2, respectively. Then the risk of E1 ∪ E2 is at most p1 + p2.

Proof. Let E ′
1 = assoc(E1), E

′
2 = assoc(E2) be events testifying the risk of E1 and E2. Let E ′

1,2 =
E ′
1 ∪ E ′

2. We shall show that the event E ′
1,2 testifies a risk of at most p1 + p2 for E1 ∪ E2. Firstly,

Pr[E ′
1,2] ≤ Pr[E ′

1]+Pr[E ′
2] ≤ p1+p2, by the union bound and the definition of risk. We need to bound

maxψ∈Respect(E ′
1,2)

Pr(E1 ∪ E2 | ψ). Consider any ψ ∈ Respect(E ′
1,2). Let ϕ̂ be a full assignment that

respects ψ and avoids E ′
1,2, which exists by the definition of retraction. Since ϕ̂ avoids E ′

1,2 = E ′
1∪E ′

2,
it in particular avoids E ′

1 and E ′
2. Hence, ψ ∈ Retract(E ′

1) and ψ ∈ Retract(E ′
2). Also, since ψ satisfies

the promises, ψ ∈ Respect(E ′
1)∩Respect(E

′
2). Using this, we get Pr(E1∪E2 | ψ) ≤ Pr(E1 | ψ)+Pr(E2 |

ψ) ≤ p1 + p2, by the assumption on the risk of E1 and E2. Hence, E ′
1,2 testifies the risk of at most

p1 + p2 for the event E1 ∪ E2.

7.3 Example LLLs with Low Risk

We illustrate here how we bound the risk of several types of natural binary LLLs. In each of these
problems, we assume that each node is sampled independently with probability q.

Lemma 7.9. Consider the following LLLs. In all of them, each node is sampled independently
with probability q, which induces a subgraph S. Let Sv = N(v) ∩ S be the sampled neighbors of
v. Let ℓ, ℓ be such that the induced neighborhood graph G[N(v)] contains ℓ · d(v) edges and thus
ℓd(v) = (d(v) − ℓ)d(v)/2 non-edges. We bound the risk of the following events.

1. Ev: |Sv| ≥ 3qd(v), i.e. v has more than 3qd(v) sampled neighbors in S.

2. Ev: |Sv| ≤ qd(v)/2, i.e. v has fewer than qd(v)/2 sampled neighbors in S.

3. Ev: G[Sv] has fewer than q2ℓd(v)/2 non-edges.

4. Ev: G[Sv] has fewer than q2ℓd(v)/2 edges.

Events (1) and (2) have risk at most exp(−Ω(qd(v))). Event (3) has risk at most exp(−qℓ/5) and
(4) has risk at most exp(−qℓ/5).

Proof. 1. Monotone decreasing event. We apply Lemma 7.7 to the variable Xv = |Sv|, with
associated event E ′

v being that |Sv| ≥ 3qd(v)/2. The risk is at most Pr[E ′
v], which by Chernoff

is exp(−Ω(qd(v))).

2. Monotone increasing event for which we apply Lemma 7.3. The risk is at most Pr[Ev], which
by Chernoff is exp(−Ω(qd(v))).

3. Monotone increasing event. Represent the number of non-edges in G[Sv] by the random
variable Xv = |{{u,w} ∈ Sv × Sv : {u, v} 6∈ E}|. The expected value of Xv is q2ℓd(v). By
Lemma 7.3, the risk is at most Pr[Ev], which by Lemma 8.3 is at most exp(−qℓ/5).

4. Identical to part 3, switching the role of edges and non-edges.

The subsetting problems show that our method need not depend on the maximum degree, ∆,
but rather in terms of the size of the domain of the sampling.

These properties can be easily generalized to restricted forms of sampling.

29

Observation 7.10. These properties hold also when we sample from a subset T ⊆ V . The bounds
are then in terms of dT (v) = |T ∩N(v)|.

We now use these to bound the risk of various subsampling problems. The lemma does not take
simulatability of the (associated) events into account yet.

Lemma 7.11. The following problems can be formulated as LLLs with bounded risk:

1. Vertex subset splitting: Split a given subset T ⊆ V of nodes into two parts V1, V2, such that
each node v in V has between dT (v)/2 and 3dT (v) neighbors. Risk: exp(−Ω(dT (v))).

2. Sparsity splitting: We are given that each node has at least ℓd(v) non-edges within its neigh-
borhood and wish to partition the vertices into two sets S1, S2, such that each node has at
least ℓd(v)/16 non-edges within N(v) ∩ S1 and within N(v) ∩ S2. Risk: exp(−Ω(ℓ)).

3. Sparsity-preserving sampling: We are given that each node v has at least ℓd(v) non-edges
within its neighborhood) and a parameter d′. We seek a subset S ⊂ V such that each node
has: a) at most d′ neighbors in S and b) at least ℓ′d′ edges within G[Sv], where ℓ′ = Ω(ℓ) is
maximized. Risk: exp(−Ω(ℓ)).

4. Density splitting: Given that each node has at least ℓd(v) edges within its neighborhood, par-
tition the vertices into two sets S1, S2, such that each node has at least ℓd(v)/16 non-edges
within N(v) ∩ S1 and within N(v) ∩ S2. Risk: exp(−Ω(ℓ)).

5. Splitting a set with a large matching: Given that each node has a matching of size ℓ in its
neighborhood, partition the vertices into two sets S1, S2, such that each node has a matching
of size ℓ/64 within G[N(v) ∩ S1] and within G[N(v) ∩ S2].

Proof. 1. Combine Lemma 7.9 parts (1) and (2), using Lemma 7.8 and Observation 7.10.

2. We use sampling with fair coins for each node. So, in the context of a node v, let X1, X2

be the two parts of N [v] formed by the sampling. The expected sparsity within either set
Xi is ℓ/4. The bad event E is when the sparsity within either part is less than ℓ/16 and
the associated event E ′

v is the stricter event that the sparsity within either part is less than
ℓ/6. The probability of E ′

v is exp(−Ω(ℓ)), by Lemma 8.3. If E ′
v occurs, then all incident

variables are retracted, in which case the marginal probability is at most that of E itself, or
exp(−Ω(ℓ)). So, assume E ′

v did not occur. Now allow that an arbitrary subset T of N(v) gets
retracted (without using the property of the second round of retractions). Let X ′

1 = X1 \ T
and X ′

2 = X2 \T . Since E
′
v did not occur, it holds for either i that the set X ′

i ∪T has sparsity
at least ℓ/6. Now each node in T is flipped again with a fair coin, producing sets T1 and T2
(that are r.v.’s). Let Si = X ′

i ∪ Ti, for i = 1, 2. The expected size of Si is at least ℓ/24 (since
only a subset of T gets thrown out of X ′

i∪T in the formation of Si, each node with probability
1/2). Thus, the probability that Si has sparsity less than ℓ/32 is exp(−Ω(ℓ)), by Lemma 8.3.
Since this holds for every possible retraction, the risk is bounded above by exp(−Ω(ℓ)).

3. Follows by Lemma 7.9 part (1) and (3), combined via Lemma 7.8.

4. Identical to case 2, switching the roles of edges and non-edges.

5. Fix a particular matching Mv within G[N(v)] of size ℓ. We use again sampling with fair coins
for each node, resulting in an initial partition of N(v) into vertex sets X1 and X2. Let Yi

30

be the number of edges of Mv with both endpoints in Xi, for i = 1, 2. Both endpoints of an
edge in Mv are in Yi with probability 1/4, so E[Yi] = µ = |Mv|/4 = ℓ/4. The bad events are
E = E1 ∪ E2 with E i denoting that Yi < µ/8. Consider the stricter associated events E ′ that
either set satisfies Yi < µ/2. By Chernoff, Pr[E ′] ≤ Pr[E] = exp(−Ω(|Mv |)). Our argument
now follows part (2) closely. Consider the case when a node was happy with the assignment
X1,X2, but afterward, a (possibly empty) subset T of incident variables was retracted. To
bound the risk, we want to bound the conditional probability of E given the assignment fixed
on N(v) \ T . The subgraph induced by Xi ∪ T had a matching of size µ/2. When flipping
the subset T to produce sets X ′

1,X
′
2, in expectation at least a µ/8-sized matching remains

in X ′
i. Thus, by Chernoff, the probability X ′

i contains no matching of size at least µ/16 is
exp(−Ω(µ)). Hence, the risk is exp(−Ω(ℓ).

The proofs of the splitting problems (2), (4), and (5) in Lemma 7.11 do not explicitly use the
monotonicity of some of the events. Instead, they rely on a hereditary property of the events.

8 Applications II: Coloring Sparse Graphs and Slack Generation

8.1 Degree+1 List Coloring (d1LC)

In the deg+1-list coloring (d1LC) problem, each node of a graph receives as input a list of available
colors whose size exceeds its degree. The goal is to compute a proper vertex coloring in which each
node outputs a color from its list. In the centralized setting, the problem can be solved with a
simple greedy algorithm and it also admits efficient distributed algorithms.

Lemma 8.1 (List coloring [HKNT22, HNT22]). There is a randomized CONGEST algorithm to
(deg + 1)-list-color (d1LC) any graph in O(log5 log n) rounds, w.h.p. This reduces to O(log3 log n)
rounds when the degrees and the size of the color space is poly(log n).

In this section, we present our algorithms for degree-bounded sparsity-preserving sampling, slack
generation, and our results on coloring triangle-free and sparse graphs with ≪ ∆ colors.

8.2 Sparsity-preserving Degree Reduction

Local Sparsity. The (local) sparsity ζv of a vertex v is defined as ζv =
1
∆

(

(∆
2

)

−m(N(v))
)

, where

for a set X of vertices, m(X) denotes the number of edges in the subgraph G[X]. Roughly speaking,
ζv is proportional to the number of missing edges mv in the graph induced by v’s neighborhood.
For a node with degree ∆, we have exactly mv = ∆ζv non-edges in G[N(v)]. In general, the number
of non-edges is

(d(v)
2

)

−m(N(v)), where m(N(v)) ≤
(∆
2

)

− ζv∆ for nodes with sparsity at least ζv.
We require the following theorem to analyze how sparsity is preserved when randomly sampling

nodes into a set.

Theorem 8.2 (Janson’s inequality). Let S ⊆ V be a random subset formed by sampling each v ∈ V
independently with probability p. Let A be any collection of subsets of V . For each A ∈ A, let
IA := 1(A ⊆ S) be an indicator variable for the event that A is contained in S. Let f :=

∑

A∈A IA
and µ := E[f]. Define

K :=
1

2

∑

A,B∈A,A∩B 6=∅

E[IAIB] (8)

31

Then, for any 0 ≤ t ≤ E[f],

Pr[f ≤ E[f]− t] ≤ exp

(

−
t2

2µ+K

)

The expected number of non-edges that is preserved when sampling nodes into a set S with
probability p is a p2-fraction. The following lemma shows that the probability of deviating from
this expectation is small.

Lemma 8.3 (Non-edge hitting Lemma). Let G be a graph on the vertex set X with m non-edges.
Sample each node of X with probability p into a set S and let f be the random variable describing
the number of non-edges in G[S]. Then we have Pr(f ≤ p2m/2) ≤ exp (−pm/5|X|).

Proof. Let E be the set of non-edges in G. For each non-edge e ∈ E, define an indicator variable
Ie = 1(e ⊆ S) for the event that the non-edge e is preserved in G[S]. We have E[f] =

∑

e∈E E[Ie] =
mp2. We can bound (8):

K =
1

2

∑

e,e′∈E,e∩e′ 6=∅

E[IeIe′] ≤
1

2
m(2|X| − 2)p3 ≤ m|X|p3

Using Theorem 8.2 with t = E[f]/2, we can compute Pr[f ≤ p2m/2] = Pr[f ≤ E[f] − t], where

Pr[f ≤ E[f] − t] ≤ exp
(

− t2

2E[f]+K

)

≤ exp
(

− p4m2/4
2p2m+p3m|X|

)

= exp
(

− p2m
8+4p|X|

)

≤ exp
(

− pm
5|X|

)

assuming p|X| ≥ 8.

We use the following lemma to compute a small-degree subgraph that preserves a large number
of non-edges:

Lemma 8.4 (Degree-Bounded Sparsity-Preserving Sampling). Assume that log2 log n ≤ ∆ ≤
O(log n). Let X,Y ⊆ V such that for all v ∈ X, the number of non-edges in G[N(v)∩Y] is at least
α∆2 for some 0 < α ≤ 1/2 with 1/α = O(poly log log n). Let µ = (600/α) log ∆ · log log n. There is
a randomized poly log log n-time CONGEST algorithm, that w.h.p. finds a set S ⊆ Y s.t. each v ∈ X
has at most ∆s = 4µ neighbors in S, and at least mthres = αµ2/2 = Ω((1/α) log2 ∆ · log2 log n)
non-edges in subgraph induced by N(v) ∩ S.

Proof. We define a sparsity-preserving degree reduction LLL and solve it with the algorithm of
Theorem 4.4 for binary LLLs with low risk. For each w ∈ Y , define a variable indicating that w
is sampled to S, which happens with probability p := µ/∆. Sampled nodes are called black and
non-sampled nodes white. For each v ∈ X, define two unwanted events Ed and Eζ :

• Let Ed be the event that v has more than 4µ sampled neighbors in S. The expected number
of neighbors in S is d(v) · µ/∆ ≤ µ. Hence, Pr(Ed) ≤ exp (−2µ/3) by Chernoff. Additionally,
define an associated event assoc(Ed) as the event that at most 2µ neighbors are sampled. We
have Pr(assoc(Ed)) ≤ exp (−µ/3). This bounds the risk of Ed to be at most Pr(assoc(Ed)) by
Lemma 7.7

• Let Eζ be the event that the number of non-edges in G[N(v)∩S] is less than mthres = αµ2/2.
Let f be a random variable for the number of non-edges in the graph induced byX = N(v)∩S.
Apply Lemma 8.3, with |X| ≤ ∆ and µ ≥ α∆2. We have E[f] ≥ p2m ≥ αµ2. This gives

Pr(Eζ) = Pr(f ≤ E[f]/2) ≤ exp
(

− pm
5|X|

)

≤ exp
(

−αµ
5

)

. Eζ is a monotone increasing event.

Hence, its risk is at most pζ = Pr(Eζ) by Lemma 7.3, where the associated event assoc(Eζ) is
Eζ itself.

32

For each v ∈ X, a bad event E is defined as the union Ed ∪ Eζ . This event depends on the sampling
status of the neighbors of v. Hence, the dependency degree of the sparsity-preserving sampling LLL
is d = ∆2. By Lemma 7.8, the associated event of E is the union, assoc(E) = assoc(Ed) ∪ assoc(Eζ).
The risk of E is at most pζ + pd = Pr(Eζ) + 2Pr(Ed) ≤ e−µ/3 + 2e−αµ/5 ≤ d100·log logn.

The locality of the LLL is 2, since dependent events are within two hops of each other in G. We
show that the LLL is simulatable. We can show that the required primitives in Definition 2.3 can
be executed in O(µ) = poly log log n rounds:

1. Test : Sampled nodes inform their neighbors. If an event node v ∈ X has more than 2µ
sampled neighbors, the event assoc(E) occurs. Otherwise, v pipelines a list of IDs of its
sampled neighbors L = N(v) ∩ S to each of its (sampled) neighbors in O(µ) rounds. Each
neighbor w ∈ N(v) ∩ S receiving the list report which nodes x ∈ L are not in N(w). This
allows v to learn the list of non-edges in G[N(v) ∩ S].

2. 1-bit Min-Aggregation: Trivial to do in one round, as variables are adjacent to events in G.

For the following, we can assume that nodes have access to IDbitLen = Θ(poly log log n)-bit IDs.

3 Evaluate: We start with some pre-processing for each v ∈ X to learn the edges in G[N(v)] (all
parallel instances share a common pre-processing phase). All nodes v ∈ V forward the list of
IDs in N(v) to each neighbor. The IDs take at most O(IDbitLen ·∆) = O(log n ·poly log log n
bits, which can be sent in poly log log n rounds. Given partial assignments ϕ and ψ, any event
node v ∈ X can compute the required conditional probabilities locally, using knowledge of
the structure of G[N(v)].

4 Min-aggregation: This is trivial as variables are adjacent to events in G. Sending the O(log n)
different O(log log n)-bit strings takes O(log log n) rounds.

8.3 Slack Generation for Sparse Nodes

The slack of a node (potentially in a subgraph) is defined as the difference between the size of its
palette and the number of uncolored neighbors (in the subgraph).

Definition 8.5 (Slack). Let v be a node with color palette Ψ(v) in a subgraph H of G. The slack
of v in H is the difference |Ψ(v)− d|, where d is the number of uncolored neighbors of v in H.

Slack generation is based on trying a random color for a subset of nodes. Sample a set of nodes
and a random color for each of the sampled nodes. Nodes keep the random color if none of their
neighbors chose the same color. See Algorithm 2 for a pseudocode.

Consider a node v with lots of sparsity in its neighborhood, i.e., many non-edges in G[N(v)].
Let w,w′ ∈ N(v) be two neighbors of v such that w,w′ are not adjacent. If w and w′ keep the
same color, v gets one unit of slack, as two of its neighbors get colored while the color palette is
only reduced by one color. It can be shown that the obtained slack is roughly proportional to the
sparsity of v, see for example [EPS15, HKMT21]. We prove a similar result in terms of the number
of non-edges, with a custom-sized color palette:

Lemma 8.6 (Slack generation with custom color space). Let ∆s, χ be positive integers with χ ≥
c′∆s for some constant c′ > 0. Let S ⊆ V be a subset of nodes. Consider a node v ∈ V with at least
m non-edges in G[N(v)∩S]. Suppose that all nodes in S, as well as v, have at most ∆s neighbors in

33

Algorithm 3 TryColor (vertex v, color cv)

1: Send cv to N(v), receive the set T = {cu : u ∈ N(v)}.
2: if cv /∈ T then permanently color v with cv .
3: Send/receive permanent colors, and remove the received ones from Ψ(v).

S. After running SlackGeneration on S with color palette [χ], the slack of v is increased by at least
e−3/c′m/(500χ) = Ω(m/χ), with probability at least 1 − exp(−Ω(m/χ)). This holds independently
of the random choices at a distance greater than 2.

Proof. Let NS(v) = N(v) ∩ S for short. Let X ⊆
(NS(v)

2

)

be the set of non-edges, where |X| = m.
Each node in S is activated with probability p = 1/20. Activated node w runs TryColor, where
w selects a color u.a.r. from [χ].

Let cw be the random color chosen, and let xw be the possible permanent color, or xw = ⊥ in
case of a conflict.

Let Z be the number of colors c ∈ [χ] s.t. there exists a non-edge {u,w} ∈ X with cu = cw = c,
and for all such non-edges, xu = xw = c, i.e. all the nodes retain the color (see below for a formal
definition with quantifiers). Say that a non-edge {u,w} ∈ X is successful if xu = xw 6= ⊥, and
no node in NS(v) \ {u,w} picks the same color. Let Y{u,w} be an indicator function for the event
that {u,w} is successful. We have E[Z] ≥

∑

{u,w}∈X E[Y{u,w}], since each non-edge with Y{u,w} = 1
counts towards Z. The probability of a non-edge being successful is at least

Pr(Y{u,w}) ≥ p2
(

χ− 1

χ

)2∆s−2(1

χ

)(

χ− 1

χ

)∆s−2

≥
p2

χ

(

χ− 1

χ

)3∆s

≥
e−3/c′p2

χ

where u and v are activated with probability p2 and select the same color w.p. 1/χ; with probability
(χ−1
χ)2∆s−2 none of the neighbors of u nor v choose that particular color, and (χ−1

χ)∆s−2 is the
probability that no other neighbors of v choose that color. In the last inequality, we used that
χ ≥ c′∆s. This gives E[Z] ≥

∑

{u,w}∈X EY{u,w} ≥ me−3/c′p2/χ.
Next, we show that Z is concentrated around its mean. Let T be the number of colors that are

randomly chosen in TryColor by both nodes of at least one non-edge in X. Let D be the number
of colors that are chosen in TryColor by both nodes of at least one non-edge in X, but are not
retained by at least one of them. Formally,

T := # colors c s.t. ∃{u,w} ∈ X : cu = cw = c

D := # colors c s.t.
(

∃{u,w} ∈ X : cu = cw = c
)

∧
(

∃{u,w} ∈ X : (cu = cw = c) ∧ (xu = ⊥ ∨ xw = ⊥)
)

Z := # colors c s.t.
(

∃{u,w} ∈ X : cu = cw = c
)

∧
(

∀{u,w} ∈ X : (cu = cw = c) =⇒ (xu = xw = c)
)

We have Z = T −D, since D counts the colors where the implication in the definition of Z fails.
We upper bound E[T] (which implies the same bound for D, as D ≤ T). For a fixed color c,

the probability that both u,w pick c is at most 1/χ2. By union bound, the probability that c is
picked by at least one non-edge is at most m/χ2. There are χ colors, so E[T] ≤ χ ·m/χ2 = m/χ.

The functions T andD are r-certifiable with r = 2 and r = 3, respectively. See the appendix and
Lemma A.1 for the definition of an r-certifiable function. T and D are both 2-Lipschitz: whether
a node is activated, and which color it picks affects the outcome by at most c = 2. We apply

34

Lemma A.1 with b = E[Z]/10− 60c
√

r · E[T]:

Pr[|T − E[T]| ≥ b+ 60c
√

r · E[T]] = Pr[|T − E[T]| ≥ E[Z]/10]

≤ 4 exp

(

−

(

E[Z]/10 − 60c
√

r · E[T]
)2

8c2rE[T]

)

≤ exp

(

−Θ(1)

(

E[Z]2

E[T]
−

E[Z]
√

E[T]
+O(1)

))

≤ exp (−Ω(m/χ))

In the last inequality, we used that E[Z] ≥ me−3/c′p2/χ and E[T] ≤ m/χ. The same concentration
bound applies for D, meaning that Pr[|D − E[D]| ≥ E[Z]/10] ≤ exp (−Ω(m/χ)). By union bound,
neither of the events |T −E[T]| ≥ E[Z]/10 and |D−E[D]| ≥ E[Z]/10 occur with probability at least
1 − 2 exp (−Ω(m/χ)). Hence, Z = T −D ≥ E[T] − E[Z]/10 − (E[D] + E[Z]/10) = (4/5) · E[Z] ≥
e−3/c′m/(500χ), with probability at least 1− exp (−Ω(m/χ)).

In the next lemma, we use our disjoint variable set LLL to produce large amounts of slack for
nodes. The lemma assumes that we are already given two sets S1 and S2 that induce sufficiently
many non-edges in the neighborhood of every relevant node.

Lemma 8.7. Let ∆s = O(poly log log n). Let m and χ = O(∆) be positive integers such that
m/χ = Ω(log∆ · log log n) and χ ≥ c′∆s for some constant c′. Let W ⊆ V and let S1, S2 ⊂ V be
disjoint sets such that for i = 1, 2,

• ∀v ∈ (W ∪ S1 ∪ S2) : dSi(v) ≤ ∆s,

• ∀v ∈W : the number of non-edges in N(v) ∩ Si is at least m

There is a randomized CONGEST algorithm that w.h.p. colors a subset of S1 ∪S2 using a palette of
size 2χ such that every node in W has at least e−3/c′m/(500χ) = Ω(m/χ) same-colored neighbors.
Every node in W,S1, S2 has at most 2∆s of its neighbors colored.

Proof. We define a disjoint variable LLL for slack generation and solve it with Theorem 5.2. The
random process is defined by the SlackGeneration algorithm. We define two variables for each
v ∈ S1 ∪ S2. Let av be a variable indicating that v is activated, which happens with probability
1/20. Let cv be a variable for a color chosen uniformly at random from the node’s palette, 1, . . . , χ
and χ+ 1, . . . , 2χ for nodes in S1 and S2, respectively. For notational purposes, cv is defined for
all nodes, regardless of the value of av. The variables av, cv are also independent of the variables of
other nodes. For each v ∈W , define the bad event Ev that the slack of v does not get increased by
at least sthres := e−3/c′m/(500χ). The probability of Ev is at most exp(−Ω(m/χ)) by Lemma 8.6.

We show that the slack generation LLL is simulatable.

1. Test : Each variable node v ∈ S1 runs SlackGeneration. Activated nodes that retained
their color inform their neighbors. An event node w ∈ W receives the retained colors in its
neighborhood and counts how much slack was generated.

2. 1-bit min-aggregation: Each event broadcasts its bit, traveling for 2 hops. Broadcasts of
multiple events can be combined (since any variable node v ∈ S is a variable for all events in
its 2-hop neighborhood). The same works in the other direction.

35

By the definition of simulatability, we can assume that each event and variable has access to a
unique O(log log n)-bit identifier id for the following:

3. Evaluate: We show the primitive for a single partial assignment using poly log log n bandwidth
– the primitive for O(log n) parallel instances follows from this. Let S = S1 ∪ S2. Each
event node w ∈ W can learn the list of neighbors in S for each of its immediate neighbors
v ∈ N(w) ∩ S in O(∆s) = poly log log n rounds (this will even be the same for all parallel
instances). Given a partial assignment ψ, where each variable node v ∈ S knows its values
(or ⊥) for av and cv, w learns the values in N2(w) ∩ S: each immediate neighbor v ∈ N(w)
pipelines L = {(ψ(x), id(x)) : x ∈ N(v) ∩ S} to w. Communicating L takes O(∆s · χ) =
poly log log n bits. Knowing the structure of the distance-2 neighborhood in S, as well as
the partial assignment for nodes in N2(w) ∩ S, allows w to locally compute the conditional
probability of obtaining enough slack, i.e. its event not occurring.

4 Min-aggregation: The principle is the same as for 1-bit aggregation. Sending the O(log n)
different O(log log n)-bit strings takes O(log log n) rounds.

8.4 Coloring Sparse Graphs

In this section, we prove the following theorem.

Theorem 8.8 (Coloring sparse graphs). Let G be a graph with maximum degree ∆ = Ω(log2 log n)
and sparsity ζ ≥ ǫ2∆. Let x = log∆ · log log n/6. There is a randomized poly log log n-time
CONGEST algorithm computing a (∆− x)-coloring of G with high probability.

Proof. Let ∆′ = ∆ − x. Let D = {v ∈ V : d(v) ≥ ∆′}. As a node v ∈ D with d(v) ≥ ∆′

initially has more neighbors than available colors, we need to increase its slack by at least d(v) +
1 −∆′ ≤ ∆+ 1 −∆′ = x + 1 to get a (deg+1)-list coloring instance. The sparsity of any node v
is ζ = 1

∆

((∆
2

)

−m(v)
)

≥ ǫ2∆, which implies that the number of edges m(v) in G[N(v)] is at most
(

∆
2

)

− ∆2ǫ2. For a node v ∈ D, the number of non-edges in G[N(v)] is at least
(

∆′

2

)

− m(v) ≥
(∆′

2

)

−
(∆
2

)

+ ǫ2∆2 ≥ 1
2ǫ

2∆2 =: m where the last inequality assumes x ≤ ǫ2∆/2, which holds for
large enough n.

Assume that ∆ = Ω(log2 log n) and ∆ ≤ 100 log n. Start by computing two disjoint sets
S1, S2 ⊆ V , that preserve the sparsity for nodes in D, while having a bounded degree. Apply
Lemma 8.4 for X = D and Y = V , where the number of non-edges is at least m = ǫ2∆2/2. The
result is a set S1 ⊆ Y s.t. all nodes have at most (4800/ǫ2) log∆ · log log n neighbors in S1 and
each v ∈ D has at least (105/ǫ2) log2∆ · log2 log n non-edges in G[N(v) ∩ S1]. The algorithm
works with high probability and runs in poly log log n rounds. The number of non-edges in the
remaining graph G[N(v) ∩ (V \ S1)] for v ∈ D is at least ǫ2∆2/2 − ∆ · ∆s ≥ ǫ2∆2/4 when n is
large enough. Compute another sparsity preserving set S2 ⊂ V \ S1 with the same approach. All
nodes have at most ∆s := (9600/ǫ2) log∆ · log log n neighbors in S2 and each v ∈ D has at least
ms := (105/ǫ2) log2 ∆ · log2 log n non-edges in G[N(v) ∩ S2].

We generate slack for nodes in D by running Lemma 8.7 with the sets S1, S2. We use a color
palette of size 2∆s (divided equally for the two sets). This colors a subset of S1 ∪ S2 (possibly
including nodes in D), such that the slack for each v ∈ D is increased by at least ms/(1000e

3 ·∆s) ≥
(1/5) log ∆ · log log n. This is at least the required slack, x + 1. At this point, we can color the
remaining uncolored nodes in D and V \ D (at the same time) with the (deg+1)-list coloring
algorithm of Lemma 8.1.

36

Lastly, suppose that ∆ ≥ 100 log n. Run SlackGeneration on G, using all ∆′ colors. It was
previously shown that each v ∈ D has at least m = 1

2ǫ
2∆2 non-edges in its neighborhood. By

Lemma 8.6, each v ∈ D has its slack increased by at least 1
1000e6

ǫ2∆2

∆−x ≥ 1
106
ǫ2∆, with probability

at least 1− exp(−Ω(m/∆′)) ≥ 1− exp(−Ω(∆)) ≥ 1− n−c for some constant c. The obtained slack
1

106
ǫ2∆ is at least the required log∆ · log log n+ 1 when n is large enough.

8.5 Coloring Triangle-free Graphs

Triangle-free graphs are maximally sparse in the sense that neighbors of a node are never connected.
This allows us to generate slack linear in ∆. We prove the following theorem.

Theorem 8.9 (Coloring Triangle-free Graphs). Let G be a triangle-free graph with maximum
degree ∆. There is a randomized poly log log n-time CONGEST algorithm to γ∆-color G with high
probability, for a constant γ = 1− 10−7.

Proof. Let ∆′ = γ∆. Let D = {v ∈ V : d(v) ≥ ∆′}. We need to generate slack for all nodes in
D. As a node v ∈ D with d(v) ≥ ∆′ initially has more neighbors than available colors, we need to
increase its slack by at least d(v) + 1−∆′ ≤ ∆+ 1−∆′ to get a (deg+1)-list coloring instance.

We consider three different ranges of ∆: (1) ∆ = O(log2 log n), (2) ∆ = Ω(log2 log n) and
∆ ≤ 100 log n, and (3) ∆ ≥ 100 log n. We start by giving a proof for (2). In the other cases, the
result follows from previous work, or all events hold with high probability.

Assume that ∆ = Ω(log2 log n) and ∆ ≤ 100 log n. Split all vertices into k = 2ǫ4∆/(ln∆ log2 log n)
classes with discrepancy ǫ∆/k using the algorithm of [HMN22, Theorem 23], for some small con-
stant ǫ. The algorithm runs in poly log log n rounds, with high probability. It produces a partition
V1, . . . , Vk of V s.t. for all v ∈ V and all 1 ≤ i ≤ k : dVi(v) = d(v)/k ± ǫ∆/k. In particular, for
all v ∈ D, the number of neighbors in Vi is at most ∆s := ∆

k + ǫ∆
k = O(ln∆ · log2 log n) and at

least δs := γ∆
k − ǫ∆

k = Ω(ln∆ · log2 log n). As there are no triangles, for each v ∈ D the number

of non-edges in G[N(v) ∩ Vi] is at least m :=
(δs
2

)

= 1
2

(γ∆
k − ǫ∆

k

)(γ∆
k − ǫ∆

k − 1
)

≥ ∆2

16k2
assuming

γ − ǫ ≥ 1/2.
We generate slack on the classes of the partition in parallel. For 1 ≤ i ≤ k, each class Vi is

assigned a subset of χ = ⌊∆
′

k ⌋ colors, [(i − 1)⌊∆
′

k ⌋, i · ⌊∆
′

k ⌋]. Form k/2 instances, each using a pair
of vertex classes: for 1 ≤ j ≤ k/2, the nodes in V2j−1, V2j are used together. We apply Lemma 8.7
on each instance in parallel. The size of the color palette satisfies χ ≥ c∆s for c = 1/2. Each
instance succeeds with high probability, and we take a union bound over all k/2 instances. To
avoid congestion, we assign each instance a subset of the edges for communication, such that any
edge is used for at most two instances. Note that a node in Vi only needs to communicate with
other nodes in Vi within 2 hops. Let {v,w} ∈ E be any edge, where v ∈ Vx and w ∈ Vy for some
1 ≤ x ≤ y ≤ k. The edge {v,w} is used for communication in the instances with Vx and Vy, for a
total of at most 2 instances.

By Lemma 8.7, in each instance, the amount of slack generated is at least e−3/cm
500χ ≥ ∆2/16k2

500e6·γ∆/k
≥

∆
4·106·k

. Over all the k/2 instances, the amount of slack generated for each v ∈ D is at least ∆ ·10−7.
Hence, all nodes inD get slack by at least the required amount, d(v)+1−∆′ ≤ ∆+1−γ∆ ≈ 10−7 ·∆.
At this point, we can color the remaining uncolored nodes in D and V \D (at the same time) with
the (deg+1)-list coloring algorithm of Lemma 8.1.

It remains to handle cases (1) and (3). When ∆ ≥ 100 log n, slack is generated with high
probability. Run SlackGeneration on G, using all χ = ∆′ colors. Each v ∈ D has at least
m = (∆′)2/2 non-edges in its neighborhood. By Lemma 8.6, each v ∈ D has its slack increased by at
least m

500e3χ
≥ 1

21000∆
′ ≥ ∆·10−7, with probability at least 1−exp(−Ω(m/χ)) ≥ 1−exp(−Ω(γ∆)) =

37

1− 1/nc for some constant c. Lastly, when ∆ = O(log2 log n), this same process of slack generation
is an exponential LLL with a small dependency degree, d = poly log log n. This can be solved with
high probability using the algorithm of [MU21], running in poly log log n rounds.

References

[Bar15] L. Barenboim. Deterministic (∆ + 1)-coloring in sublinear (in ∆) time in static, dy-
namic and faulty networks. In Proc. 34th ACM Symposium on Principles of Distributed
Computing (PODC), pages 345–354, 2015.

[BBH+21] Alkida Balliu, Sebastian Brandt, Juho Hirvonen, Dennis Olivetti, Mikaël Rabie, and
Jukka Suomela. Lower bounds for maximal matchings and maximal independent sets.
J. ACM, 68(5):39:1–39:30, 2021.

[BE10] Leonid Barenboim and Michael Elkin. Sublogarithmic distributed mis algorithm for
sparse graphs using nash-williams decomposition. Distributed Computing, 22(5):363–
379, 2010.

[BE13] Leonid Barenboim and Michael Elkin. Distributed Graph Coloring: Fundamentals and
Recent Developments. Morgan & Claypool Publishers, 2013.

[Bec91] József Beck. An Algorithmic Approach to the Lovász Local Lemma. Random Structures
& Algorithms, 2(4):343–365, 1991.

[BEG18] Leonid Barenboim, Michael Elkin, and U. Goldenberg. Locally-iterative distributed
(delta + 1)-coloring below szegedy-vishwanathan barrier, and applications to self-
stabilization and to restricted-bandwidth models. In the Proceedings of the ACM
Symposium on Principles of Distributed Computing (PODC), 2018.

[BEPS16] Leonid Barenboim, Michael Elkin, Seth Pettie, and Johannes Schneider. The locality
of distributed symmetry breaking. Journal of the ACM, 63(3):20:1–20:45, 2016.

[BFH+16a] Sebastian Brandt, Orr Fischer, Juho Hirvonen, Barbara Keller, Tuomo Lempiäinen,
Joel Rybicki, Jukka Suomela, and Jara Uitto. A Lower Bound for the Distributed
Lovász Local Lemma. In the Proceedings of the ACM-SIAM Symposium on Discrete
Algorithms (SODA), 2016.

[BFH+16b] Sebastian Brandt, Orr Fischer, Juho Hirvonen, Barbara Keller, Tuomo Lempiäinen,
Joel Rybicki, Jukka Suomela, and Jara Uitto. A lower bound for the distributed
Lovász local lemma. In Proc. 48th ACM Symposium on Theory of Computing (STOC
2016), pages 479–488. ACM, 2016.

[BGR20] Sebastian Brandt, Christoph Grunau, and Václav Rozhon. Generalizing the sharp
threshold phenomenon for the distributed complexity of the Lovász local lemma. In
PODC ’20: ACM Symposium on Principles of Distributed Computing, Virtual Event,
Italy, August 3-7, 2020, pages 329–338, 2020.

[BKM20] Philipp Bamberger, Fabian Kuhn, and Yannic Maus. Efficient deterministic distributed
coloring with small bandwidth. In PODC ’20: ACM Symposium on Principles of
Distributed Computing, Virtual Event, Italy, August 3-7, 2020, pages 243–252, 2020.

38

[BMU19] Sebastian Brandt, Yannic Maus, and Jara Uitto. A sharp threshold phenomenon for
the distributed complexity of the Lovász local lemma. In Proceedings of the 2019
ACM Symposium on Principles of Distributed Computing, PODC 2019, Toronto, ON,
Canada, July 29 - August 2, 2019, pages 389–398, 2019.

[Bra19] Sebastian Brandt. An automatic speedup theorem for distributed problems. In Peter
Robinson and Faith Ellen, editors, Proceedings of the 2019 ACM Symposium on Prin-
ciples of Distributed Computing, PODC 2019, Toronto, ON, Canada, July 29 - August
2, 2019, pages 379–388. ACM, 2019.

[CHL+20] Yi-Jun Chang, Qizheng He, Wenzheng Li, Seth Pettie, and Jara Uitto. Distributed
edge coloring and a special case of the constructive Lovász local lemma. ACM Trans.
Algorithms, 2020.

[CLP20] Yi-Jun Chang, Wenzheng Li, and Seth Pettie. Distributed (∆+1)-coloring via ultrafast
graph shattering. SIAM Journal of Computing, 49(3):497–539, 2020.

[CP19] Yi-Jun Chang and Seth Pettie. A time hierarchy theorem for the LOCAL model. SIAM
J. Comput., 48(1):33–69, 2019.

[CPS17] Kai-Min Chung, Seth Pettie, and Hsin-Hao Su. Distributed algorithms for the lovász
local lemma and graph coloring. Distributed Comput., 30(4):261–280, 2017.

[Dav23] Peter Davies. Improved distributed algorithms for the lovász local lemma and edge
coloring. In Proceedings of the 2023 Annual ACM-SIAM Symposium on Discrete Al-
gorithms (SODA), pages 4273–4295. SIAM, 2023.

[EL74] Paul Erdös and László Lovász. Problems and Results on 3-chromatic Hypergraphs
and some Related Questions. Colloquia Mathematica Societatis János Bolyai, pages
609–627, 1974.

[EPS15] Michael Elkin, Seth Pettie, and Hsin-Hao Su. (2∆ − 1)-edge-coloring is much easier
than maximal matching in the distributed setting. In Proceedings of the Twenty-Sixth
Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2015, San Diego, CA,
USA, January 4-6, 2015, pages 355–370, 2015.

[FG17] Manuela Fischer and Mohsen Ghaffari. Sublogarithmic Distributed Algorithms for
Lovász Local Lemma, and the Complexity Hierarchy. In the Proceedings of the 31st
International Symposium on Distributed Computing (DISC), pages 18:1–18:16, 2017.

[FHK16] Pierre Fraigniaud, Marc Heinrich, and Adrian Kosowski. Local conflict coloring. In
the Proceedings of the Symposium on Foundations of Computer Science (FOCS), pages
625–634, 2016.

[FHM23] Manuela Fischer, Magnús M. Halldórsson, and Yannic Maus. Fast distributed Brooks’
theorem. In the Proceedings of the ACM-SIAM Symposium on Discrete Algorithms
(SODA), pages 2567–2588, 2023.

[FK23] Marc Fuchs and Fabian Kuhn. List defective colorings: Distributed algorithms and
applications. In Rotem Oshman, editor, 37th International Symposium on Distributed
Computing, DISC 2023, October 10-12, 2023, L’Aquila, Italy, volume 281 of LIPIcs,
pages 22:1–22:23. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2023.

39

[GG23] Mohsen Ghaffari and Christoph Grunau. Faster deterministic distributed MIS and
approximate matching. In Barna Saha and Rocco A. Servedio, editors, Proceedings of
the 55th Annual ACM Symposium on Theory of Computing, STOC 2023, Orlando, FL,
USA, June 20-23, 2023, pages 1777–1790. ACM, 2023.

[GGH+23] Mohsen Ghaffari, Christoph Grunau, Bernhard Haeupler, Saeed Ilchi, and Václav
Rozhoň. Improved distributed network decomposition, hitting sets, and spanners, via
derandomization. In the Proceedings of the ACM-SIAM Symposium on Discrete Algo-
rithms (SODA), pages 2532–2566, 2023.

[GGR21] Mohsen Ghaffari, Christoph Grunau, and Václav Rozhoň. Improved deterministic
network decomposition. In the Proceedings of the ACM-SIAM Symposium on Discrete
Algorithms (SODA), 2021.

[Gha19] Mohsen Ghaffari. Distributed maximal independent set using small messages. In Proc.
30th Symp. on Discrete Algorithms (SODA), pages 805–820, 2019.

[GHK18] Mohsen Ghaffari, David G. Harris, and Fabian Kuhn. On derandomizing local dis-
tributed algorithms. In 59th IEEE Annual Symposium on Foundations of Computer
Science, FOCS 2018, Paris, France, October 7-9, 2018, pages 662–673, 2018.

[GHKM18] Mohsen Ghaffari, Juho Hirvonen, Fabian Kuhn, and Yannic Maus. Improved dis-
tributed delta-coloring. In Proceedings of the 2018 ACM Symposium on Principles of
Distributed Computing, PODC 2018, Egham, United Kingdom, July 23-27, 2018, pages
427–436, 2018.

[GK21] Mohsen Ghaffari and Fabian Kuhn. Deterministic distributed vertex coloring: Simpler,
faster, and without network decomposition. In the Proceedings of the Symposium on
Foundations of Computer Science (FOCS), pages 1009–1020, 2021.

[GKM17] Mohsen Ghaffari, Fabian Kuhn, and Yannic Maus. On the complexity of local dis-
tributed graph problems. In the Proceedings of the ACM-SIAM Symposium on Discrete
Algorithms (SODA), pages 784–797. ACM, 2017.

[GS17] Mohsen Ghaffari and Hsin-Hao Su. Distributed degree splitting, edge coloring, and
orientations. In the Proceedings of the ACM-SIAM Symposium on Discrete Algorithms
(SODA), pages 2505–2523, 2017.

[HKMT21] Magnús M. Halldórsson, Fabian Kuhn, Yannic Maus, and Tigran Tonoyan. Efficient
randomized distributed coloring in CONGEST. In the Proceedings of the ACM-SIAM
Symposium on Discrete Algorithms (SODA), pages 1180–1193, 2021. Full version at
CoRR abs/2105.04700.

[HKNT22] Magnús M. Halldórsson, Fabian Kuhn, Alexandre Nolin, and Tigran Tonoyan. Near-
optimal distributed degree+1 coloring. In Stefano Leonardi and Anupam Gupta, ed-
itors, STOC ’22: 54th Annual ACM SIGACT Symposium on Theory of Computing,
Rome, Italy, June 20 - 24, 2022, pages 450–463. ACM, 2022.

[HMN22] Magnús M. Halldórsson, Yannic Maus, and Alexandre Nolin. Fast distributed vertex
splitting with applications. In Christian Scheideler, editor, 36th International Sympo-
sium on Distributed Computing, DISC 2022, October 25-27, 2022, Augusta, Georgia,
USA, volume 246 of LIPIcs, pages 26:1–26:24. Schloss Dagstuhl - Leibniz-Zentrum für
Informatik, 2022.

40

[HN21] Magnús M. Halldórsson and Alexandre Nolin. Superfast coloring in CONGEST via
efficient color sampling. In Tomasz Jurdzinski and Stefan Schmid, editors, Structural In-
formation and Communication Complexity - 28th International Colloquium, SIROCCO
2021, Wroc law, Poland, June 28 - July 1, 2021, Proceedings, volume 12810 of Lecture
Notes in Computer Science, pages 68–83. Springer, 2021.

[HNT22] Magnús M. Halldórsson, Alexandre Nolin, and Tigran Tonoyan. Overcoming congestion
in distributed coloring. In the Proceedings of the ACM Symposium on Principles of
Distributed Computing (PODC), pages 26–36. ACM, 2022.

[HSS16] S. G. Harris, J. Schneider, and H.-H. Su. Distributed (∆+1)-coloring in sublogarithmic
rounds. In Proc. 48th Symp. on the Theory of Computing (STOC), 2016.

[Joh99] Öjvind Johansson. Simple distributed ∆ + 1-coloring of graphs. Inf. Process. Lett.,
70(5):229–232, 1999.

[Lin92] Nati Linial. Locality in distributed graph algorithms. SIAM Journal on Computing,
21(1):193–201, 1992.

[Mau21] Yannic Maus. Distributed graph coloring made easy. In Kunal Agrawal and Yossi
Azar, editors, SPAA ’21: 33rd ACM Symposium on Parallelism in Algorithms and
Architectures, Virtual Event, USA, 6-8 July, 2021, pages 362–372. ACM, 2021.

[MPU23] Yannic Maus, Saku Peltonen, and Jara Uitto. Distributed symmetry breaking on power
graphs via sparsification. In Proceedings of the 2023 ACM Symposium on Principles
of Distributed Computing, PODC ’23, page 157–167, New York, NY, USA, 2023. Asso-
ciation for Computing Machinery.

[MR13] Michael Molloy and Bruce Reed. Graph colouring and the probabilistic method, vol-
ume 23. Springer Science & Business Media, 2013.

[MT10] Robin A. Moser and Gábor Tardos. A Constructive Proof of the General Lovász Local
Lemma. J. ACM, pages 11:1–11:15, 2010.

[MT20] Yannic Maus and Tigran Tonoyan. Local conflict coloring revisited: Linial for lists. In
Hagit Attiya, editor, 34th International Symposium on Distributed Computing, DISC
2020, October 12-16, 2020, Virtual Conference, volume 179 of LIPIcs, pages 16:1–16:18.
Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2020.

[MU21] Yannic Maus and Jara Uitto. Efficient CONGEST algorithms for the Lovász local
lemma. In Seth Gilbert, editor, the Proceedings of the International Symposium on Dis-
tributed Computing (DISC), volume 209 of LIPIcs, pages 31:1–31:19. Schloss Dagstuhl
- Leibniz-Zentrum für Informatik, 2021.

[NS95] Moni Naor and Larry Stockmeyer. What can be computed locally? SIAM J. on Comp.,
24(6):1259–1277, 1995.

[Pel00] David Peleg. Distributed Computing: A Locality-Sensitive Approach. SIAM, 2000.

[RG20] Václav Rozhoň and Mohsen Ghaffari. Polylogarithmic-time deterministic network de-
composition and distributed derandomization. In the Proceedings of the ACM-SIAM
Symposium on Discrete Algorithms (SODA), pages 350–363, 2020.

41

A Supplementary Results

Concentration Bounds

We use the following Talagrand’s inequality. A function f(x1, . . . , xn) is called c-Lipschitz iff the
value of any single xi affects f by at most c. Additionally, f is r-certifiable if for every x =
(x1, . . . , xn), (1) there exists a set of indices J(x) ⊆ [n] such that |J(x)| ≤ r · f(x), and (2) if x′

agrees with x on the coordinates in J(x), then f(x′) ≥ f(x).

Lemma A.1 (Talagrand’s Inequality II [MR13]). Let X1, . . . ,Xn be independent random variables
and f(X1, . . . ,Xn) be a c-Lipschitz, r-certifiable function. For any b ≥ 1:

Pr(|f − E[f]| > b+ 60c
√

rE[f]) ≤ 4 exp

(

−
b2

8c2rE[f]

)

Deterministic LLL in LOCAL

LLLs can be solved efficiently with deterministic algorithms in the LOCAL model.

Theorem A.2 (Deterministic LLL in LOCAL, [RG20]). There is a deterministic LOCAL algorithm
for the constructive Lovász local lemma under criterion epd(1 + ε) < 1, for a constant ε > 0 that
runs in O(log∗ s) + poly log n rounds if the communication network has at most n nodes and node
IDs are from a space of size s and the event/variable assignment has locality poly log n.

Theorem A.2 is proven by using the powerful general derandomization framework of [RG20,
GHK18, GKM17] for the algorithm of Moser-Tardos [MT10].

Shattering Lemma

Lemma A.3 (The Shattering Lemma, [FG17, BEPS16]). Let G = (V,E) be a graph with maximum
degree ∆. Consider a process that generates a random subset B ⊆ V such that P [v ∈ B] ≤ ∆−c1, for
some constant c1 ≥ 1, and such that the random variables 1(v ∈ B) depend only on the randomness
of nodes within at most c2 hops from v, for all v ∈ V , for some constant c2 ≥ 1. Then, for any
constant c3 ≥ 1, satisfying c1 > c3 + 4c2 + 2, we have that any connected component in G[B] has
size at most O(log∆ n∆

2c2) with probability at least 1− n−c3.

Communication on Top of Weak Network Decompositions

Lemma A.4 ([GGR21, MU21]). Let G be a communication graph on n vertices. Suppose that
each vertex of G is part of some cluster C such that each such cluster has a rooted Steiner tree
TC of diameter at most β and each node of G is contained in at most κ such trees. Then, in
O(max{1, κ/b} · (β + κ)) rounds of the CONGEST model with b-bit messages, we can perform the
following operations for all clusters in parallel on all clusters:

1. Broadcast: The root of TC sends a b-bit message to all nodes in C;

2. Convergecast: We have O(1) special nodes u ∈ C, where each special node starts with a
separate b-bit message. At the end, the root of TC knows all messages;

3. Minimum: Each node u ∈ C starts with a non negative b-bit number xu. At the end, the root
of TC knows the value of minu∈C xu;

4. Summation: Each node u ∈ C starts with a non negative b-bit number xu. At the end, the
root of TC knows the value of

(
∑

u∈C xu
)

mod 2O(b).

42

	Introduction
	Our Contributions: LLL solvers
	Disjoint variable set LLLs
	Binary LLLs with low risk

	Our Contribution: Coloring Sparse and Triangle-Free Graphs
	Further Related Work
	Outline of the rest of the paper

	Distributed Lovász Local Lemma (Definitions)
	Constructive Lovász Local Lemma (LLL)
	Constructive Distributed Lovász Local Lemma
	Simulatable Distributed Lovász Local Lemma (CONGEST)

	Technical Overview & Technical Contributions
	Disjoint Variable Set LLLs
	Binary LLLs with low risk
	Post-shattering in CONGEST
	Coloring Sparse Graphs

	Binary LLLs with low Risk
	Disjoint Variable Set LLLs
	Efficient Post-shattering in CONGEST
	Network Decomposition
	The LLL algorithm of Chung, Pettie, Su
	Efficient Post-shattering in CONGEST (details)

	Applications and Bounding Risks
	Example of Disjoint Variable Set LLL: Slack Generation
	Techniques to Bound Risk
	Example LLLs with Low Risk

	Applications II: Coloring Sparse Graphs and Slack Generation
	Degree+1 List Coloring (d1LC)
	Sparsity-preserving Degree Reduction
	Slack Generation for Sparse Nodes
	Coloring Sparse Graphs
	Coloring Triangle-free Graphs

	Supplementary Results

