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MULTIDEGREES OF BINOMIAL EDGE IDEALS

JACOB COOPER AND ETHAN LEVENTHAL

Abstract. Let G be a simple graph with binomial edge ideal JG. We prove how to
calculate the multidegree of JG based on combinatorial properties of G. In particular, we
study the set Smin(G) defined as the collection of subsets of vertices whose prime ideals
have minimum codimension. We provide results which assist in determining Smin(G),
then calculate Smin(G) for star, horned complete, barbell, cycle, wheel, and friendship
graphs, and use the main result of the paper to obtain the multidegrees of their binomial
edge ideals.

1. Introduction

Let n ∈ N and let G be a simple, connected graph with vertex set V (G) = [n] :=
{1, . . . , n} and edge set E(G). Let K be a field and let T be the polynomial ring T :=
K[x1, . . . , xn, y1, . . . , yn]. The binomial edge ideal of G is defined as

JG := (xiyj − xjyi : i < j and {i, j} ∈ E(G)).

These ideals have been intensely studied during the past few decades, in particular because
of their connection to the class of ideals of 2-minors of a generic 2 × n matrix, as well
as their connection to conditional independence [1, 5, 8, 13]. Similarly, the multidegree
is a potent geometric invariant that has been used across domains of algebra, geometry,
and even statistics [3, 4, 7, 9, 11]. We begin this section with the necessary notations to
state the main result, then we include the statement of our main theorem, and finally we
provide an outline of the rest of the paper.

Notation 1.1. Let G be a graph. For a subset S ⊆ V (G), let S denote V (G) \ S and
consider the induced subgraph G[S]. Let c(S) be the number of connected components
of G[S]. We denote hmin := minS∈V (G){|S| − c(S)}. Then we define

Smin(G) :=
{

S ⊆ V (G) : |S| − c(S) = hmin

}

.

By labeling the connected components Gi for i = 1, . . . , c(S), we establish the notation
N(S) :=

(

|V (G1)|, . . . , |V (Gc(S))|
)

as the multiset containing the number of vertices of
each connected component. The following is our main theorem.

Theorem A (Theorem 4.2). The multidegree of the binomial edge ideal of a graph G is

C (R(G); t1, t2) =
∑

S∈Smin(G)



(t1t2)
|S| ·

∏

n∈N(S)

tn1 − tn2
t1 − t2



 .

This theorem makes the computation of the multidegree of JG very straightforward
once Smin(G) is known.
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We begin Section 2 with some background information on multidegrees. We define the
ring of a graph G to be R(G) := T/JG so that we can follow the notation of Miller and
Sturmfels in [12] and denote the multidegree of JG with C (R(G); t1, t2) . The multidegree
is a polynomial with integer coefficients, which can be interpreted in different ways. Ge-
ometrically, for example, its coefficients correspond to the number of intersection points
between the variety determined by the ideal and a suitable product of general hyperplanes
in a product of projective spaces; algebraically, these coefficients can be read from the top
degree of the Hilbert polynomial of the ring [4, 14].

The ideal JG is radical. In [8], Herzog, Hibi, Hreinsdottir, Kahle, and Rauh give a
complete description of the prime decomposition of JG; in Section 3, we provide the
algebraic tools that allow us to use this description to find multidegrees. In Section 4,
we compute some foundational multidegrees that serve as ‘building blocks’ for our final
computations. Then we arrive at our main result, Theorem 4.2, which is a closed formula
for the multidegree of JG that only involves combinatorial properties of the graph.

We provide some results to speed up the process of determining Smin(G) and then spend
Section 5 demonstrating the usefulness of these results by calculating the multidegrees
for six different families of graphs. Finally, Section 6 concludes the paper with closing
thoughts and ideas for further research.

2. Background Information

The multidegree was originally defined by van der Waerden in 1929 [14]. It carries
tremendous information about the algebraic and geometric properties of an ideal and
its associated variety. This has made it a useful tool to approach multiple problems in
algebra, geometry, and combinatorics [3, 4, 7, 9, 11]. Here we use the Z2-grading of T
induced by xi = (1, 0) and yi = (0, 1) that carries over the variables t1, t2 = t1, t2. We
follow the notation from [12] and denote the Hilbert series of a Z2-graded module M by
H(M ; t1, t2). By [12, Theorem 8.20], there exists a K-polynomial K(M ; t1, t2) such that

H(M ; t1, t2) =
K(M ; t1, t2)

(1− t1)n(1− t2)n
.

We define the multidegree of a Z2-graded module M to be the sum C(M ; t1, t2) ∈ Z[t1, t2]
of all terms in K(M ; 1−t1, 1−t2) of smallest degree, i.e., those of total degree codim(M) :=
dim(T )−dim(M). Therefore, one has K(T ; t1, t2) = 1. Despite the popularity of binomial
edge ideals and the usefulness of the multidegree, to the best of or knowledge there is a
lack of literature studying both together. Our paper aims to investigate connections
between the multidegree of a binomial edge ideal and the combinatorial information of its
underlying graph. We note that a recent paper by Kumar and Sarkar studies the Hilbert
series of decomposable graphs in the Z-graded setting [10].

The final piece of introductory information, found in [8], is the computation of the
prime decomposition of JG. Recall that we use c(S) to denote the number of connected
components of G[S]. Call these components G1, . . . , Gc(S). For each Gi, let G̃i be the

complete graph on V (Gi). Then for a subset S ⊆ V (G) we define the prime ideal

PS(G) :=

(

⋃

i∈S

{xi, yi} , JG̃1
, . . . , JG̃

c(S)

)

.
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In [8, Theorem 3.2], it is shown that JG =
⋂

S⊆V (G) PS(G). We expand on this theorem
in the following sections to obtain a direct calculation of the multidegree of JG.

3. Relationships Between Ideals and Multidegrees

In this section we include some preparatory results that simplify the computation of
the multidegree of JG. Our first proposition narrows down which multidegrees we need
for our calculations. It is proven in [8] that the height (codimension) of PS(G) for a subset
S ⊆ V (G) is given by height (PS(G)) = |S| + n − c(S) [8, Lemma 3.1]. This makes it
clear that Smin(G), defined in Notation 1.1, is the collection of all subsets of V (G) whose
corresponding prime ideals have minimum height.

Proposition 3.1. For a graph G we have

C
(

T/
⋂

S⊆V (G)

PS(G); t1, t2

)

= C
(

T/
⋂

S∈Smin(G)

PS(G); t1, t2

)

.

Moreover, if I1, . . . , Im are homogeneous ideals of T with the same height, then

C
(

R/
⋂

i∈[m]

Ii; t1, t2

)

=
∑

i∈[m]

(

C
(

R/Ii; t1, t2

))

.

Proof. These follow from [12, Definition 8.43, Theorem 8.53, and Corollary 8.54]. �

In other words, the only prime ideals that contribute to the multidegree of JG are those
with minimum height. Additionally, this allows us to work with the sum of multidegrees
instead of an intersection of ideals.

Next, we present a similar proposition for the sum of ideals.

Proposition 3.2. Let I1, . . . , In be homogeneous ideals of T such that for distinct i and j,
the variables used in a minimal set of generators of Ii are not used in that of Ij. Moreover,

assume all the variables in T are used in the ideals Ii. Let Ti be the polynomial ring in

the variables involved in the generators of Ii. Then

C



T/
∑

i∈[n]

Ii; t1, t2



 =
∏

i∈[n]

(C(Ti/(Ii ∩ Ti); t1, t2)).

Proof. By assumption one has a graded isomorphism

T
∑

i∈[n] Ii
∼=

T1

I1 ∩ T1

⊗K · · · ⊗K

Tn

In ∩ Tn

.

Therefore

H
(

T/
∑

i∈[n]

Ii; t1, t2

)

=

∏

i∈[n]K(Ti/(Ii ∩ Ti); t1, t2)

(1− t1)n(1− t2)n

and the result follows. �

The following proposition computes the multidegree of ideals of variables.
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Proposition 3.3. For a graph G and subset of vertices S,

C(T/
⋃

i∈S

{xi, yi} ; t1, t2) = (t1t2)
|S|.

Proof. Note that

H(T/
⋃

i∈S

{xi, yi}); t1, t2) =
1

(1− t1)n−|S|(1− t2)n−|S|
=

(1− t1)
|S|(1− t2)

|S|

(1− t1)n(1− t2)n
.

The result clearly follows. �

Remark 3.4. Let G1 and G2 be two disjoint graphs and suppose H is their union.
Then by Proposition 3.2, C (R(H); t1, t2) = C (R(G1); t1, t2) · C (R(G2); t1, t2), meaning the
multidegree of the binomial edge ideal of the union of two disjoint graphs is the product
of their multidegrees. For this reason, we assume all graphs are connected graphs for the
rest of the paper.

4. Computing the Multidegree of the Binomial Edge Ideal of a Graph

In Section 3 we showed how the prime decomposition of JG can be used to find the mul-
tidegree C (R(G); t1, t2). We see from the definition that each PS(G) is constructed from
two types of ideals, so in this section we first obtain the two corresponding multidegrees.

The first multidegree we need is that of an ideal of the form
⋃

i∈S {xi, yi}, which we
showed in Proposition 3.2 to be

C(T/
⋃

i∈S

{xi, yi} ; t1, t2) = (t1t2)
|S|.

The other multidegree that we need is the multidegree of the binomial edge ideal of
a complete graph. For this we turn to a theorem proved by Bruns, Conca, Raicu, and
Varbaro in [2]: Let K be a field, X be the n×m matrix of variables and 2 ≤ t ≤ min(n,m).
For a subset L of elements of a ring, define hv(L) to be the sum of all power products of
elements of L whose exponents sum to v. Let It be the ideal generated by t-minors of X .
Then the multidegree of the ring R/It(X) with respect to the Zm-graded structure given
by columns is

C
(

R/It(X); t1, t2

)

= (t1, . . . , tm)
t−2 det(hℓ−i+j(t1, . . . , tm))i,j=1,2,...,t−1,

where ℓ = n + 1− t [2, Theorem 4.6.8]. Therefore in our setting we obtain the following
proposition.

Proposition 4.1. The multidegree of the binomial edge ideal of a complete graph Kn is

C (R(Kn); t1, t2) =
tn1 − tn2
t1 − t2

.

Proof. The binomial edge ideal of a complete graph on n vertices is simply the ideal
generated by the 2-minors of a 2 × n matrix of variables. This is an application of [2,
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Theorem 4.6.8] where n is the order of the complete graph and m = 2. Following the
theorem, we calculate t = 2 and ℓ = n+ 1− 2 = n− 1. Then the multidegree is

C (R(Kn); t1, t2) = det(hn−1(t1, t2)) =
∑

i+j=n−1
i,j≥0

ti1t
j
2 =

tn1 − tn2
t1 − t2

.

�

Recall that to compute JG, we need to find JG̃1
, . . . , JG̃

c(S)
. Since G̃1, . . . , G̃c(S) are

complete graphs, we can use Proposition 4.1 to find their multidegrees very easily once
we know the orders of these complete graphs, i.e., the number of vertices in the connected
components of G[S]. This motivates our notation N(S) :=

(

|V (G1)|, . . . , |V (Gc(S))|
)

.

Now we present the main result of the paper, a formula to combinatorially compute
the multidegree of the binomial edge ideal of a graph G. Since it relies on determining
Smin(G), we follow the theorem with a discussion of shortcuts for finding Smin(G).

Theorem 4.2. For a graph G, the multidegree of JG is

C (R(G); t1, t2) =
∑

S∈Smin(G)



(t1t2)
|S| ·

∏

n∈N(S)

tn1 − tn2
t1 − t2



 .

Proof. Let G be a simple, connected graph. We have the following chain of equalities:

C (R(G); t1, t2)

= C
(

T/JG; t1, t2

)

(By definition)

= C
(

T/
⋂

S⊆V (G)

PS(G); t1, t2

)

[8, Theorem 3.2]

= C
(

T/
⋂

S∈Smin(G)

PS(G); t1, t2

)

(Proposition 3.1)

=
∑

S∈Smin(G)

C
(

T/PS(G); t1, t2

)

(Proposition 3.1)

=
∑

S∈Smin(G)

C
(

T/
(

⋃

i∈S

{xi, yi} , JG̃1
, . . . , JG̃

c(S)

)

; t1, t2

)

(By definition)

=
∑

S∈Smin(G)



C
(

T/
⋃

i∈S

{xi, yi} ; t1, t2

)

·
∏

i=1,...,c(S)

(

C
(

R(G̃i); t1, t2

))



 (Proposition 3.2)

=
∑

S∈Smin(G)



(t1t2)
|S| ·

∏

n∈N(S)

tn1 − tn2
t1 − t2



 . (Proposition 3.3 and Proposition 4.1)

�

Theorem 4.2 explicitly states how to compute the multidegree of JG once we know
Smin(G). The obvious goal now is to determine Smin(G). We could calculate height (PS(G))
for all S, but since Smin(G) is a subset of the power set P(V (G)), this quickly becomes



6 J. COOPER AND E. LEVENTHAL

impractical. Here we provide our most relevant results to help find Smin(G) efficiently,
starting with some book-keeping notation.

Notation 4.3. For a set X and an element y we denote X + y := X ∪ {y} and X − y :=
X \ {y}. Similarly, for a graph G and vertex v we denote G− v := G[V (G)− v].

Our first result explains how cut vertices (vertices v for which c(G− v) > c(G)) affect
the height of prime ideals corresponding to the relevant subsets.

Remark 4.4. Let G be a graph, S ⊆ V (G), and v ∈ V (G) \ S. From [8, Lemma 3.1] we
get the following:

a) If v is not a cut vertex of G[S] then height (PS+v(G)) > height (PS(G)).
b) If v is a cut vertex G[S] which cuts a component of G[S] into exactly two connected

components then height (PS+v(G)) = height (PS(G)).
c) If v cuts a component of G[S] into three or more connected components then

height (PS+v(G)) < height (PS(G)).

Next, recall that a simplicial vertex of a graph is a vertex whose open neighborhood
forms a clique, i.e., whose neighbors are all adjacent. This includes vertices of degree 1,
called leaves. We prove that simplicial vertices can be ignored when finding Smin(G).

Proposition 4.5. Let G be a graph. For all S ∈ Smin(G), S contains no simplicial

vertices.

Proof. Let G be a graph with simplicial vertex v and let v 6∈ S ⊆ V (G). We will show S+
v /∈ Smin(G). Since v is a simplicial vertex, its neighbors in G[S] are adjacent (regardless
of S). This means v is not a cut vertex of G[S]. By Remark 4.4, height (PS+v(G)) >
height (PS(G)). We have found a subset of vertices whose prime ideal has height less than
that of S + v, thus S + v /∈ Smin(G). �

The last result we present here requires S ∈ Smin(G) to be a separating set, a vertex
subset of a (connected) graph G whose removal disconnects G.

Proposition 4.6. Let G be a graph. For all nonempty S ∈ Smin(G), S is a separating

set of G.

Proof. Let G be a graph of order n and suppose S ∈ Smin(G) is nonempty. For all
T ⊆ V (G) we have height (PS(G)) ≤ height (PT (G)), so in particular height (PS(G)) ≤
height (P∅(G)). By [8, Lemma 3.1],

|S|+ n− c(S) ≤ n− 1

|S|+ c(S) ≤ −1

|S|+ 1 ≤ c(S).

Since S is nonempty, |S| ≥ 1. This implies 2 ≤ c(S), thus S is a separating set of G. �

5. Example Applications

To demonstrate the usefulness of Theorem 4.2, we take this section to work through
some examples involving basic families of graphs. First, a bit of notation.
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Notation 5.1. Recall that N(S) records the sizes of the connected components of G[S].
When describing N(S) in these examples, we will use the convenient notation of n : x to
denote n copies of x.

The first example we consider is a star graph, which gives a great first look at our
proposed process for calculating multidegree, as well as showing off Proposition 4.5 for
reductions in cases with simplicial vertices.

Example 5.2 (Star Graph). Let Sn be a star graph of order n, so it has n − 1 leaves
and one central vertex which we will call v0 (as in Figure 1). We assume n > 3, since
when n ≤ 3, Sn is a path graph and should be treated as such; see Proposition 5.8. The
first step in finding the multidegree is determining Smin(Sn). By Proposition 4.5 we know
Smin(Sn) does not include subsets of vertices that contain a leaf vertex. This rules out all
but the two subsets ∅ and {v0}. By [8, Lemma 3.1], height (P∅(G)) = 0+n−1 = n−1 and
height

(

P{v0}(G)
)

= 1+n− (n−1) = 2. Since n > 3, we can see that P{v0}(G) has a lower

height, so Smin(Sn) = {{v0}}. We have N({v0}) = {n− 1 : 1}, thus by Theorem 4.2,

C (R(Sn); t1, t2) = (t1t2)
1 ·

(

t11 − t12
t1 − t2

)n−1

= t1t2.

v0

v1 v2

Figure 1. S6 (Left) and B5 (Right)

Now we take a look at barbell graphs to prove that their multidegrees turn out to be
quite interesting: their coefficients are consecutive odd numbers.

Example 5.3 (Barbell Graph). We will use the notation of Bn to denote the barbell graph
constructed by taking two copies of Kn and connecting a vertex v1 in one to a vertex v2 in
the other (such as in Figure 1). Proposition 4.5 rules out all simplicial vertices, yielding
Smin(Bn) ⊆ P({v1, v2}). Doing the height calculations for the four possible elements
reveals that Smin(Bn) = {∅, {v1} , {v2}}.

We find thatN(∅) = {2n} andN({v1}) = N({v2}) = {n, n− 1}. Then by Theorem 4.2,

C (R(Bn); t1, t2) = (t1t2)
0 ·

t2n1 − t2n2
t1 − t2

+ 2 ·

[

(t1t2)
1 ·

tn1 − tn2
t1 − t2

·
tn−1
1 − tn−1

2

t1 − t2

]

=
t2n1 − t2n2
t1 − t2

+ 2t1t2 ·
tn1 − tn2
t1 − t2

·
tn−1
1 − tn−1

2

t1 − t2

=
∑

i+j=2n−1
i,j≥0

ti1t
j
2 + 2t1t2 ·

∑

i+j=n−1
i,j≥0

ti1t
j
2 ·

∑

i+j=n−2
i,j≥0

ti1t
j
2
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=
∑

i+j=2n−1
i,j≥0

ti1t
j
2 + 2t1t2 ·

∑

i+j=2n−3
i,j≥0

(min {i, j}+ 1)ti1t
j
2

=
∑

i+j=2n−1
i,j≥0

ti1t
j
2 +

∑

i+j=2n−1
i,j≥0

2min {i, j} ti1t
j
2

=
∑

i+j=2n−1
i,j≥0

(1 + 2min {i, j})ti1t
j
2.

Thus the coefficients of C (R(Bn); t1, t2) are consecutive odd numbers!

Next we introduce a new family of graphs called the horned complete graphs, which
have a particularly interesting multidegree. They also illustrate Remark 4.4.

Example 5.4 (Horned Complete Graph). Let Ǩn be a horned complete graph, which we
define as the complete graphKn on vertices U := {v1, . . . , vn} with two leaves (‘horns’) at-
tached to each (see Figure 2). By Proposition 4.5, we know Smin(Ǩn) will not include sub-
sets that contain a ‘horn’ vertex, which narrows it down to Smin(Ǩn) ⊆ P({v1, . . . , vn}).
To determine it exactly, first note that v1 cuts the graph into three connected compo-
nents, so by Remark 4.4, height

(

P{v1}(Ǩn)
)

< height
(

P∅(Ǩn)
)

. Now in Ǩn−v1, we once

again have a vertex v2 that cuts one component into three, so height
(

P{v1,v2}(Ǩn)
)

<

height
(

P{v1}(Ǩn)
)

. This pattern continues until Ǩn − {v1, . . . , vn−1}, in which vn cuts

one component into two, so height
(

P{v1,...,vn}(Ǩn)
)

= height
(

P{v1,...,vn−1}(Ǩn)
)

. Because
of the graph’s symmetry, we can repeat the argument above for all vi ∈ U and conclude
Smin(Ǩn) = {U − vi : i ∈ [n]} ∪ {U}.

See thatN(U − vi) = {2n− 2 : 1, 3} for i ∈ [n] andN(U) = {2n : 1}, so by Theorem 4.2,

C
(

R(Ǩn); t1, t2
)

= n ·

[

(t1t2)
n−1 ·

(

t11 − t12
t1 − t2

)2n−2

·
t31 − t32
t1 − t2

]

+ (t1t2)
n ·

(

t11 − t12
t1 − t2

)2n

= n ·

[

(t1t2)
n−1 ·

t31 − t32
t1 − t2

]

+ (t1t2)
n

= n(t1t2)
n−1(t21 + t1t2 + t22) + tn1 t

n
2

= n(tn+1
1 tn−1

2 + tn1 t
n
2 + tn−1

1 tn+1
2 ) + tn1 t

n
2

= ntn+1
1 tn−1

2 + (n + 1)tn1 t
n
2 + ntn−1

1 tn+1
2 .

Note that the leading coefficient of C
(

R(Ǩn); t1, t2
)

is n rather than a constant, so it
scales with the order of the graph. Based on our data collection in Section 6, this is a
particularly rare property for the multidegrees of these ideals to have.

Next we get the multidegree of the binomial edge ideal of a cycle graph, which demon-
strates the use of familiar subgraphs to determine Smin(G).

Example 5.5 (Cycle Graph). Let Cn be a cycle graph on n vertices and let v be an
arbitrary vertex (as in Figure 2). We have that Cn − v is just Pn−1, a path graph with
n − 1 vertices; see Proposition 5.8. Note that for all S ⊂ V (Pn−1), v 6∈ S is either not
a cut vertex of G[S] or cuts a component into exactly two components, so it follows
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v1

v2

v3

v4

v

Figure 2. Ǩ4 (Left) and C5 (Right)

from Remark 4.4 that ∅ ∈ Smin(Pn−1). Hence ∅ ∈ Smin(Cn − v), so by definition, for
all S ⊆ V (Cn − v) we have height (PS(Cn − v)) ≥ height (P∅(Cn − v)). Equivalently,
for all S ⊆ V (Cn) with v ∈ S we have height (PS(Cn)) ≥ height

(

P{v}(Cn)
)

. Notice

v is not a cut vertex of Cn, so by Remark 4.4, height
(

P{v}(Cn)
)

> height (P∅(Cn)).
Thus for all nonempty S ⊆ V (Cn) we have height (PS(Cn)) > height (P∅(Cn)). Hence
Smin(Cn) = {∅}.

By Theorem 4.2, the multidegree is

C (R(Cn); t1, t2) = (t1t2)
0 ·

tn1 − tn2
t1 − t2

=
tn1 − tn2
t1 − t2

.

Our second to last example is the wheel graph, which uses Proposition 4.6.

Example 5.6 (Wheel Graph). Let Wn be a wheel graph of order n, which is a cycle on
n − 1 vertices with each vertex connected to a central vertex v0 (such as in Figure 3).
Suppose S ∈ V (G) is nonempty.

(Case 1) Suppose v0 ∈ S. Note v0 is not a cut vertex of Wn, so by Remark 4.4,
height

(

P{v0}(Wn)
)

> height (P∅(Wn)). Also, Wn − v0 is isomorphic to Cn−1 which has
Smin(Cn−1) = {∅}. By the same reasoning as the previous example, height (PS(Wn)) >
height (P∅(Wn)), thus S /∈ Smin(Wn).

(Case 2) Suppose v0 /∈ S. Then S cannot be a separating set, so by Proposition 4.6,
S /∈ Smin(Wn).

In both cases S /∈ Smin(Wn), thus Smin(Wn) = {∅}.

Recall that ∅ was also the only element of Smin(Cn). This makes the computation of
their multidegrees quite simple, and the fact that Cn and Wn are both connected graphs
with the same size means they have the same multidegree.

C (R(Wn); t1, t2) = (t1t2)
0 ·

tn1 − tn2
t1 − t2

=
tn1 − tn2
t1 − t2

.

Finally, we demonstrate Proposition 4.5 by computing the multidegree of the binomial
edge ideals of friendship graphs and then briefly explain how the strategy can generalize
to windmill graphs.

Example 5.7 (Friendship Graph). Let Fn be the friendship graph constructed by con-
necting n copies of K3 at a common vertex v0, as in Figure 3. By Proposition 4.5,
Smin(Fn) ⊆ P({v0}). By Remark 4.4 we see that height

(

P{v0}(Fn)
)

< height (P∅(Fn)), so
Smin(Fn) = {{v0}}.
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v0
v0

Figure 3. W6 (Left) and F4
∼= W4:3 (Right)

We compute N({v0}) = {n : 2}. By Theorem 4.2,

C (R(Fn); t1, t2) = (t1t2)
1 ·

(

t21 − t22
t1 − t2

)n

= t1t2 · (t1 + t2)
n

= t1t2 ·
∑

i+j=n
i,j≥0

(

n

i

)

ti1t
j
2

=
∑

i+j=n
i,j≥0

(

n

i

)

ti+1
1 tj+1

2 .

This strategy works equally well for windmill graphs Wn,m, a generalization of friendship

graphs that combine m copies ofKn. The only difference in calculations is that N({v0}) =
{m : n− 1}, so the algebra requires the multinomial theorem instead of the binomial
theorem.

Let Pn denote a path graph with n vertices, a graph whose edges are {i, i+ 1} for 1 ≤
i < n. We were not able to obtain a satisfying closed formula for the multidegree of path
graphs using our main theorem. However, since JPn

is generated by a regular sequence, in
the following proposition we are able to make this computation using alternative methods.

Proposition 5.8. For every positive integer n we have

C (R(Pn); t1, t2) =
∑

i+j=n−1
i,j≥0

(

n− 1

i

)

ti1t
j
2.

Proof. Let fi = xiyi+1−xi+1yi for 1 ≤ i < n be the generators of JPn
. Notice that each fi

is homogeneous of degree (1, 1) and that f1, . . . , fn−1 form a regular sequence. Therefore
we have graded short exact sequences

0 → T/(f1, . . . , fi−1)[(−1,−1)]
fi
−→ T/(f1, . . . , fi−1) → T/(f1, . . . , fi) → 0,

for each i, where (f1, . . . , fi−1) is the zero ideal if i = 1. Thus

H
(

T/(f1, . . . , fi); t1, t2

)

= (1− t1t2)H
(

T/(f1, . . . , fi−1); t1, t2

)

for each i, and so

H
(

R(Pn); t1, t2

)

= H
(

T/(f1, . . . , fn−1); t1, t2

)

=
(1− t1t2)

n−1

(1− t1)n(1− t2)n
.

Hence C (R(Pn); t1, t2) = (t1 + t2)
n−1 as desired. �
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6. Concluding Remarks

Our studies relied extensively on the computer software Macaulay2 [6] because of its
efficiency at algebraic geometry computations 1. Of special importance were the Graphs,
EdgeIdeals, and Nauty packages for generating and studying graphs, as well as the Visu-
alize package for convenient viewing of graphs.

One of Macaulay2’s most useful contributions was to investigate the proportion of
graphs whose multidegrees had certain interesting properties. For example, a surprisingly
large portion of graphs have multiplicity-free multidegrees, meaning all coefficients are
at most 1. We also examined the leading coefficients of the multidegrees. Almost all
graphs we checked have a leading coefficient of 1, which is what motivated us to search
for and discover the horned complete graphs in Example 5.4, proving the existence of a
graph whose multidegree has leading coefficient equal to any positive integer n. It is still
unclear to us what properties of a graph may cause these interesting multidegrees, and
we expect to investigate this question in future research. Below is the table of frequencies
we collected.

Vertices 1 2 3 4 5 6 7 8 9

Simple connected graphs 1 1 2 6 21 112 853 11,117 261,080
Multiplicity-free 1 1 1 4 11 60 456 6,676 183,838

Leading coefficient of 2 0 0 0 0 0 1 2 24 203
Leading coefficient of 3 0 0 0 0 0 0 0 0 3

Notice that the table only goes up to graphs of order 9. This is because the number of
calculations needed to study each graph is immense. One improvement we achieved comes
from the following proposition, which effectively halves the number of subsets needed to
be checked when finding Smin(G).

Proposition 6.1. Let G be a graph. For all S ∈ Smin(G), |S| ≤
⌊

n−1
2

⌋

.

Proof. Let G be a graph of order n and let S ∈ Smin(G). This means for all T ⊆ V (G) we
have height (PS(G)) ≤ height (PT (G)). In particular, height (PS(G)) ≤ height (P∅(G)).
By [8, Lemma 3.1], |S|+ n− c(S) ≤ n− 1. Notice that c(S) is at most n− |S| (the case
where all vertices not in S are isolated in G[S]), so

|S|+ n− (n− |S|) ≤ n− 1

2|S| ≤ n− 1

|S| ≤
n− 1

2
.

Since |S| must be an integer, we get |S| ≤
⌊

n−1
2

⌋

as desired. �

Despite this improvement, our machines could not finish the computations for graphs
of order 10 after a week of nonstop computing.

Another area that could be explored further is generalizations of some of the graphs
presented in Section 5. For example, it is very natural to consider barbell graphs with more

1The Macaulay2 code used for these calculations can be found here: https://github.com/MrBobJrIV/
Multidegrees-of-Binomial-Edge-Ideals.

https://github.com/MrBobJrIV/Multidegrees-of-Binomial-Edge-Ideals
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than two ‘bells’, or bells of different sizes. Our methods easily provide the multidegrees of
these graphs in terms of products of polynomials, but despite the approachable appearance
of these products, we could not find satisfying simplifications or acquire exact expressions
for the final coefficients.
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