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Abstract

This paper studies a Coded Event-triggered Control (CEC) for a class of nonlinear systems under any initial condition. To
reduce communication burden, the CEC is designed from the encoding-decoding viewpoint by which only m-length string is
transmitted for each communication between CEC and actuator. If a more general Entry Capture Problem is encountered,
such control design will be rather complicated yet challenging where the performance constraints are satisfied some time after
(rather than from the beginning of) system operation, rendering normally employed prescribed performance control invalid
because they may be not defined in the initial interval. By introducing auxiliary functions, we develop a Self-adjustable
Prescribed Performance (SPP) mechanism which can flexibly adjust the symmetric or asymmetric performance boundaries
to accommodate different initial conditions, providing an effective solution for the underlying tracking problem. In this way,
the resulted CEC can not only consume less communication resources but also regulate the tracking error under any initial
condition into an allowable set before a given time in a bounded and customizable manner. Simulation results verify and clarify
the theoretical findings.
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1 Introduction

Practical systems often operate under limited computa-
tional loads but need to maintain certain performance
constraints, arising from hardware capability and task
requirements, for example, the target tracking problem
of aerial robots or the manipulator grasping. Nowadays,
event-based control has enticed sustained interest due to
its resource efficiency (Wang and Krstic (2022); Åarzén
(1999); Åström and Bernhardsson (1999); Heemels et al.
(2012); Deng et al. (2022); Sun et al. (2022); Liu et al.
(2023)). As systems grow in complexity, how to save
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communication resources and guarantee system perfor-
mance at the same time deserve more in-depth studies.

The event-based control is pioneered in Åarzén (1999);
Åström and Bernhardsson (1999), which emphasizes its
advantages over periodic sampling and motivates its sys-
tematic design later (Tabuada (2007)). Since then, it has
aroused widespread research interest, see, Dimarogonas
et al. (2011); Fan et al. (2013); Girard (2014); Xing et al.
(2016); Kumari et al. (2020); Zhang, Wen, Zhao and
Song (2022) and references therein. However, most ex-
isting protocols primarily focus on reducing unnecessary
signal transmission but neglect the encoding-decoding
process and the associated security concerns for each
communication between the control box and the actua-
tor. In practice, when the event condition is met, the real
control input is encoded into a lengthy codeword (i.e.,
16 bits) before transmission. This could aggravate com-
munication delays and congestion issues due to the lim-
ited bandwidth, particularly when communication bits
are critical. Moreover, exposing sensitive system signals
to public channels raises security concerns. This moti-
vates us to further study event-triggered control from
an encoding-decoding viewpoint, and the following two
aspects need to be considered:

(i) Resource saving. It might be redundant to trans-
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mit such a large number of digits for each commu-
nication between control box and actuator, espe-
cially when the magnitude of control signal is small.
Moreover, in situations where the communication
channel can only handle a limited number of bits at
a time, lengthy strings for communication can lead
to transmission delays and increase vulnerability to
packet losses (Mazo Jr and Cao (2014); Ding et al.
(2017)). Therefore, it is critical to further save com-
munication resources from the encoding-decoding
scheme viewpoint.

(ii) Performance maintenance. Considering the er-
ror induced by the event-trigger scheme, it may de-
grade the tracking performance. By the prescribed
performance control (Bechlioulis and Rovithakis
(2008); Zhao et al. (2017); Ji, Li, Ma and Ge
(2022); Bu et al. (2023), to name a few), the studies
of event-triggered control with prescribed perfor-
mance have been investigated in (Liu et al. (2020);
Zhang and Yang (2020); Zhang, Che, Deng and Wu
(2022)). These results are based on an implicit as-
sumption that the prescribed performance should
be satisfied from the beginning of system operation.
However, in practice, the system’s initial conditions
often violate the initial performance constraints,
rendering these existing methods inapplicable since
they are not defined outside the allowable set and
the singularity problem is encountered. Therefore,
how to develop an event-triggered control with
prescribed performance applicable for any initial
conditions is still an open problem.

To handle the first problem, one excellent work in Xing
et al. (2018) proposes a 1-bit communication protocol
for the relative threshold. Note that this protocol is un-
able to promptly respond to signal changes due to the
high threshold when control inputs are extremely large.
As stated in Xing et al. (2018), the original control sig-
nals need to be transmitted sometimes to re-calibrate
the decoder due to the signal distortion problem. The
other work in Zhang et al. (2020) studies a 2-bit strategy,
switching between fixed and relative thresholds based on
the magnitude of control inputs. Therefore, the trans-
missions of control inputs between control and actuator
are necessary, which aggravates the communication bur-
den, especially when the bandwidth is limited.Moreover,
all these communication protocols are only applicable to
binary systems, limiting their implementation in prac-
tice. How to design an effective coded event-triggered
scheme for more general base-p number systems to ad-
dress the above problems is interesting yet challenging.

For the second problem, the funnel boundary (Ilchmann
et al. (2002); Berger et al. (2022)), the global perfor-
mance functions (Zhao et al. (2021); Chen and Hua
(2020)), and tuning functions Zhang et al. (2021); Ji
et al. (2023) can remove such initial limitations. How-
ever, several limitations are observed: (i) The global
tracking abilities of funnel boundary and the global

prescribed functions are achieved by sacrificing over-
shoot performance. As their initial performance tends
to infinity, it leads to loose performance constraints.
(ii) These two methods are only suitable for symmetric
performance distribution and rely on specific perfor-
mance functions, which limits their extensions to more
general cases. (iii) Although tuning functions are stud-
ied to address a more practical yet challenging Entry
Capture Problem, there are no performance constraints
on tracking errors during the initial interval. This could
lead to potential operational and safety issues. There-
fore, how can we regulate any initial tracking error into
the allowable set in a bounded and customized manner
makes our control design more complicated.

In this paper, we propose a CEC and a SPP to reduce the
communication resources between control and actuator
while addressing the Entry Capture Problem for a class
of nonlinear systems. The main contributions lie in:

(i) We design a CEC, by which only m-length string
of base-p number system is transmitted for each
communication between control box and actuator.
Compared with the existing event-triggered results,
the CEC can further reduce the communication
burden specifically from the encoding-decoding
viewpoint.

(ii) Different from Zhao et al. (2021); Zhang et al.
(2021); Berger et al. (2022), the proposed SPP
can flexibly adjust its performance boundaries in
accordance with different initial conditions by in-
troducing auxiliary functions. This feature offers
an effective solution to make the control design
applicable to any initial conditions, which can be
easily extended to other methods.

(iii) With the aid of SPP, for any initial condition (in-
cluding initial-constraint violation), the resulted
CEC can handle the Entry Capture Problem for
either symmetric or asymmetric performance con-
straints, by which the tracking error is regulated
into an allowable set before a given time in a
bounded yet customizable manner rather than no
constraints there. In this way, the initial-condition
constraints are removed and better transient per-
formance is achieved.

2 Problem Formulation and Preliminaries

2.1 Problem statement

Consider a class of strict-feedback nonlinear systems
ẋi = fi(x̄i) + gi(x̄i)xi+1, i = 1, . . . , n− 1

ẋn = fn(x̄n) + gn(x̄n)u

y = x1

(1)
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where xi ∈ R, i = 1, . . . , n, is the system state with x̄i =
[x1, . . . , xi]

T ∈ Ri, fi(·) : Ri → R is an unknown but
continuous function, gi(·) : Ri → R denotes an unknown
time-varying control coefficient, u ∈ R and y ∈ R are
system input and output, respectively.

Define the tracking error e1(t) = y(t)− yd(t) with yd(t)
being the desired trajectory. The control objective is to
design a CEC for the nonlinear systems (1) under any
initial condition such that:

(i) All signals in the closed-loop systems are bounded;
(ii) Only a coded m-length string is required for each

communication between CEC and actuator when
the event-trigger condition is satisfied; and

(iii) For any initial condition, the tracking error e1(t)
can be regulated into the prescribed allowable set
in a customizable manner before a given time and
then be constrained within there.

Definition 1 For any initial tracking condition (includ-
ing initial constraint violation), if the tracking error e1(t)
is fully constrained by the prescribed performance bound-
aries right after a user-given settling time T > 0:

−el(t) < e1(t) < eu(t), ∀t ≥ T, (2)

then, such error tracking performance is said to be Entry
Capture Problem, where −el(t) and eu(t) denote lower
and upper prescribed boundaries, respectively.

Remark 1 The studied Entry Capture Problem repre-
sents a frequently encountered tracking situation that the
prescribed performance is involved right after a given
time T , whereas, in most existing works, these perfor-
mance constraints should be satisfied from the beginning
of system operation. One typical example is a flight sys-
tem which is often released from any condition (including
initial-constraint violation), but is required to track and
interact with a target in prescribed performance for suc-
cessful task completion. Therefore, addressing such En-
try Capture Problem is interesting yet more challenging
since it needs the control design applicable for more gen-
eral cases.

Assumption 1 The desired trajectory yd(t) and its time
derivatives up to (n+1)th-order are known, bounded, and
piece-wise continuous.

Assumption 2 The nonlinear function fi(x̄i), i =
1, . . . , n, is unknown but certain crude information is
available so that |fi(x̄i)| ≤ biϕi(x̄i), ∀t ≥ 0, where bi ≥ 0
is an unknown constant and ϕi(x̄i) ≥ 0 is a known
smooth function.

Assumption 3 The control coefficient gi(x̄i), i =
1, . . . , n ,is unknown and time-varying, but away from
zero, that is, there exist positive constants g

i
and ḡi such

that 0 < g
i
≤ |gi(x̄i)| ≤ ḡi. Without loss of generality,

we assume that the signs of gi(x̄i) are known and all
positive.

Remark 2 Assumption 1 is widely adopted in tracking
control of nonlinear systems (Krstic et al. (1995)). As-
sumption 2 indicates that some core functions can be eas-
ily extracted only based on some crude system informa-
tion, which is reasonable and in line with practice (Poly-
carpou and Ioannou (1993). Assumption 3 is necessary to
guarantee the controllable condition of nonlinear system
(1), which is made in most control design (Jin (2018)).

3 Main Results

3.1 Coded Event-triggered Scheme

With respect to the second objective of CEC, we intro-
duce a Coded Event-triggered Scheme (CES) as follows:

u(t) = v(tk), ∀t ∈ [tk, tk+1), k = 0, 1, . . . (3)

tk+1 = inf{t > tk | |∆v(t)| ≥ ωpβ}, (4)

where v(t) is the actual control to be developed, ∆v(t) =
v(t)−u(t) denotes the control signal error, tk represents
the update time, p is an even number leading to base-p
system (i.e., Binary, Octal number system), the selec-
tions of β and ω adopt the following rules:

b = q, if |u(t)| ∈ [πq, πq+1), (5)

β = b =

{∑m
j=1 sj,kp

j−1 if sm,k < p
2 ,∑m

j=1 sj,kp
j−1 − sc if sm,k ≥ p

2 ,
(6)

ω = ωb, (7)

where q ∈ {0, 1, . . . , sc − 1}, sc = pm

2 with m being the
length of encoded string to be transmitted, as such as
there are sc variations, we specify 0 = π0 < π1 < · · · <
πsc−1 < πsc = +∞ to measure the level of control input,
ω0, . . . , ωsc−1 are positive constants chosen by designers,
and sj,k ∈ {0, 1, . . . , p − 1} denotes each digit value of
base-p number system at k-th updated time. From the
triggering condition in (4), it becomes essential to deter-
mine the sign of ∆v(t) for accurate encoding-decoding
procedures. As shown in the encoding procedure (6) and
the later decoding procedure (9), it indicates that if
∆v(t) > 0, let sm,k < p

2 , otherwise, sm,k ≥ p
2 . There-

fore, supposing t ∈ [tk, tk+1), k = 0, 1, . . . , the encoded
string Sk, used for the communication between control
and actuator, is constructed by

Sk = sm,ksm−1,k . . . s2,ks1,k, (8)

where Sk is a m-length string to be transmitted when-
ever the criteria in (4) is satisfied. Based on (4) and (6),
Sk can be seen as a sign-and-magnitude representation
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of the threshold for the control signal error ∆v(t). More
specifically, sm,k denotes a sign digit, whose value de-
termines the sign of ∆v(t) (i.e., if sm,k < p

2 , ∆v(t) ≥ 0
and if sm,k ≥ p

2 , ∆v(t) < 0); and the magnitude of the
threshold for ∆v(t) is derived by the remaining digital
numbers, i.e., sm−1,k, . . . , s1,k.

If CES in (4) is satisfied at tk, Sk is expected to be broad-
casted to the actuator. When the actuator receives Sk,
it adopts the following decoder process to update ud(t)
with the aid of the last control input and parameters
stored:

ud(t) = v(tk) =

{
v(tk−1) + ωpβ if sm,k < p

2

v(tk−1)− ωpβ if sm,k ≥ p
2

(9)

where ud(0) = v(t0), and the selections of β and ω follow
the same rules in (5)-(7), which are also stored in the ac-
tuator. Based on the triggering condition in (4) and the
decoder rule in (9), it can be derived that u(t) = ud(t).
Throughout this paper, we only use u(t) to simplify the
control design. In summary, the CES is illustratively de-
scribed in Fig. 1.

Coded Event-triggered
Control

𝜷 and 𝝎 Rules

Encoder

Event Detector

Network

Decoder

Plant

𝑣(𝑡)

𝑢(𝑡)𝛽, 𝜔

𝑥!(𝑡)

Coded Event-triggered Scheme

𝑆& = 𝑠',& …𝑠",&

𝑆 &
=
𝑠 '

,&
…
𝑠 #
,&
𝑠 "
,&

𝜷 and 𝝎 Rules

𝛽, 𝜔

Fig. 1. Coded Event-triggered Scheme.

To clearly illustrate the CES, we give a simple case with
p = 2 and m = 3. This results in a Binary number sys-
tem and 3-bit binary string is used for each communica-
tion between CEC and actuator, where each digit value
of Binary number system has a value of either 1 or 0.
The encoding and decoding processes in (8) and (9) are
executed as shown in Table 1 whenever the condition in
(4) is triggered.

Some salient features of such CES can be observed from
the following aspects.

(i) Considering the relative threshold in Xing et al.
(2018) with tk+1 = inf{t > tk | |∆v(t)| ≥ δ̄|u(t)|+
d, 0 < δ̄ < 1, d > 0}, it is unable to promptly re-
spond to signal changes due to the high threshold

Table 1
Encoder and decoder design under p = 2 and m = 3

Encoder Decoder

Sk = 000 u(t) = v(tk) + ωpβ , β = 0, ω = ω0, p = 2

Sk = 001 u(t) = v(tk) + ωpβ , β = 1, ω = ω1, p = 2

Sk = 010 u(t) = v(tk) + ωpβ , β = 2, ω = ω2, p = 2

Sk = 011 u(t) = v(tk) + ωpβ , β = 3, ω = ω3, p = 2

Sk = 100 u(t) = v(tk)− ωpβ , β = 0, ω = ω0, p = 2

Sk = 101 u(t) = v(tk)− ωpβ , β = 1, ω = ω1, p = 2

Sk = 110 u(t) = v(tk)− ωpβ , β = 2, ω = ω2, p = 2

Sk = 111 u(t) = v(tk)− ωpβ , β = 3, ω = ω3, p = 2

when |u(t)| is extremely large. This signal distor-
tion often degrades tracking performance. A switch-
ing threshold scheme is proposed in Xing et al.
(2016) which switches between fixed and relative
thresholds based on the magnitude of control in-
put. However, it indicates that the transmission
of raw control input between control and actua-
tor is necessary, which aggravates the communi-
cation burden, especially when the bandwidth is
limited. Therefore, our CES is designed from an
encoding-decoding viewpoint by which only a con-
cise m-length string is transmitted for each com-
munication instead of the raw control input and m
can be chosen by designers. It not only reduces the
bandwidth required but also provides a balanced
strategy between system performance and network
constraints. Please find the following critical point
for more details.

(ii) Different from the fixed threshold in Xing et al.
(2016); Kumari et al. (2020); Zhang, Wen, Zhao
and Song (2022) and the above relative thresh-
old where thresholds are either constants or in-
crease monotonically with |u(t)|, the proposed CES
adopts a piecewise increasing threshold related
to |u(t)| and tends to a constant threshold when
|u(t)| is excessively large. This dynamic threshold
facilitates more accurate tracking performance due
to the lower threshold when |u(t)| is small, and
ensures a rapid response to the signal’s change
when |u(t)| is large with the aid of the constant
threshold. Therefore, the signal distortion problem
commonly observed in fixed and relative thresh-
olds is effectively alleviated since our CES has a
good balance between system performance and
resource constraints. Comparative simulations are
conducted in Section 6 to illustrate the effective-
ness of our CES. Moreover, the fixed threshold can
be seen as a special case of our CES if we set p = 2
and m = 1 in (4).

(iii) The excellent work in Xing et al. (2018) also stud-
ies a 1-bit communication protocol for the rela-
tive threshold scheme. However, the original con-
trol input needs to be transmitted sometimes to re-
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calibrate the decoder due to the severe signal dis-
tortion as the aforementioned discussed. In this pa-
per, our CES not only alleviates the signal distor-
tion problem but also addresses the challenge of co-
designing an event-trigger scheme with encoding-
decoding rules. As a result, the CES provides a
leaner communication protocol, which is friendly
for practical systems with limited communication
bit resources. On the other hand, by encrypting
the control signal into an encoded string Sk, we in-
herently improve communication security against
potential cyber threats without the knowledge of
encoding-decoding rules.

3.2 Auxiliary Functions

To deal with the third control objective of this article,
we first introduce the definition of auxiliary functions.

Definition 2 Auxiliary functions ηu(t) and ηl(t) are
scalar functions which satisfies the following properties:

(i) η
(k)
u and η

(k)
l , k = 0, . . . , n + 1, are known, contin-

uous, and bounded;
(ii) ηu(0) > e1(0)− eu(0) and ηl(0) < e1(0) + el(0);
(iii) ηu(t), ηl(t), η̇u(t), η̇l(t) → 0 as t → T , where T is

the settling time in (2); and
(iv) ηu(t) ≥ ηl(t), ∀t ≥ 0 and ηu(t) = ηl(t) = 0, ∀t ≥ T .

Obviously, there exist many candidates satisfying these
properties, for example,

ηu(t) =

{
(e1(0) +

(λ−2)eu(0)+λel(0)
2 )e−

lTt
T−t , 0 ≤ t < T

0, t ≥ T

ηl(t) =

{
(e1(0)− λeu(0)+(λ−2)el(0)

2 )e−
lTt
T−t , 0 ≤ t < T

0, t ≥ T

where l and λ ≥ 1 are positive constants, el(0) and
eu(0) denote the initial values of performance constraints
el(t) and eu(t) which will be defined in the next section.
Throughout this paper, we use the above functions as
the auxiliary functions.

Remark 3 More details about the motivation of such
auxiliary functions are provided here. From the third
objective in section 2.1, the control scheme should be
adapted to any initial condition. However, in practice,
the initial condition may violate the performance con-
straints initially, rendering most existing PPC methods
inapplicable since they are not defined and suffer from
singularity problem in such scenario. To handle this prob-
lem, a straightforward approach is to utilize these auxil-
iary functions to adjust the performance boundaries in
accordance with the initial condition. By leveraging the
second property in Definition 2, any given initial condi-
tion would remain within an updated and allowable set,

thereby ensuring the applicability of the control method.
Other properties are also crucial for system analysis un-
der addressing the Entry Capture Problem (2). Moreover,
there would be fruitful expressions of such additional aux-
iliary functions which facilitate their extension to other
control approaches.

3.3 Self-adjustable Prescribed Performance

We design the following Self-adjustable Prescribed Per-
formance (SPP) on the tracking error e1(t) by introduc-
ing the above auxiliary functions into the performance
boundaries:

−El(t) < e1(t) < Eu(t), ∀t ≥ 0, (10)

with

Eu(t) = eu(t) + ηu(t), (11)

El(t) = el(t)− ηl(t), (12)

where eu(t) and −el(t) represent the original upper and
lower Tunnel Prescribed Performance (TPP) (Ji, Li and
Ge (2022)), which are given by:

eu(t) = (δ + sign(e1,0))ρ(t)− ρ∞sign(e1,0), (13)

el(t) = (δ − sign(e1,0))ρ(t) + ρ∞sign(e1,0), (14)

where 0 < δ < 1, e1,0 = e1(0), ρ(t) = (ρ0−ρ∞)e−ςt+ρ∞
with ρ0 > ρ∞ > 0 and ς > 0.

To better illustrate the mechanism behind such SPP, we
take e1(0) > 0 as an example. The parameters of SPP
(11)-(12) are selected as: δ = 0.6, ρ0 = 0.5, ρ∞ = 0.2,
l = 1, ς = 1.2, λ = 3, T = 4, and the initial track-
ing condition is e1(0) = 2. As shown in the left plot
of Fig. 2, the initial tracking error e1(0) violates the
original allowable set established by eu(t) and −el(t),
which is colored in brown. It renders the previous meth-
ods inapplicable due to the singularity problem encoun-
tered. With the aid of the auxiliary functions, SPP is
capable of re-adjusting the performance boundaries ac-
cording to different initial conditions such that e1(t) is
always within the updated allowable set initially (i.e.,
−El(0) < e1(0) < Eu(0)) as shown in the right plot
of Fig. 2 in green color. During the initial time inter-
val (0 ≤ t ≤ T ), our SPP not only ensures the control
method applicable for any initial conditions but also pro-
vides temporary performance constraints on the track-
ing error. When t ≥ T , SPP is equivalent to the origi-
nal performance boundaries, that is, Eu(t) = eu(t) and
−El(t) = −el(t) since ηu(t) = ηl(t) = 0 as depicted in
the right figure. Therefore, SPP provides an effective so-
lution for the underlying Entry Capture Problem (2) as
stated in the following lemma.

Lemma 1 If −El(t) < e1(t) < Eu(t) holds for all t ≥ 0,
then the Entry Capture Problem (2) is obtained.
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Fig. 2. The mechanism behind the Self-adjustable Prescribed Performance.

Proof: When 0 ≤ t < T , the boundedness of ηu(t)
and ηl(t) is guaranteed according to Definition 2. By
(13)-(14), the original TPP is also bounded there. It
ensures that e1(t) is bounded on [0, T ). When t ≥ T ,
we have −El(t) < e1(t) < Eu(t) which can be rewritten
as −el(t) < e1(t) < eu(t). If the above statement holds,
the Entry Capture Problem is, therefore, addressed by
invoking Definition 1. 2

From the above discussion, the control objective is suc-
cessfully transfered to guarantee e1(t) evolving within
the SPP envelope (10) to deal with the issue of Entry
Capture Problem.

Remark 4 In comparison with funnel boundary (Berger
et al. (2022)), global prescribed performance (Zhao et al.
(2021); Zhang et al. (2021)) and tuning functions (Zhang
et al. (2021); Ji et al. (2023)), some salient features of
the proposed SPP (10) are observed as follows:

(i) (Improved transient performance) The funnel
boundary and global prescribed performance often
encounter an overshoot problem, as their initial per-
formance constraints tend to infinity leading to a
loose allowable set. Similarly, by tuning functions,
there are no constraints on tracking errors during
the initial interval, which is undesirable in practice
due to safety concerns and task demands. Different
from these methods, our SPP is capable of adjusting
performance boundaries with the help of auxiliary
functions such that the proposed control scheme can
be applied to any initial condition even if the ini-
tial constraints are violated. It provides bounded yet
customizable virtual performance boundaries during
the initial interval as depicted in Fig. 2, effectively
avoiding the aforementioned severe overshoot per-
formance and unconstrained behaviors. The track-
ing error is regulated into the allowable set within

finite time and Entry Capture Problem is therefore
solved.

(ii) (Flexibility and Extendibility) Our SPP allows
for an easy extension to other control methods by in-
tegrating the introduced auxiliary functions into the
performance boundaries as formulated in (10)-(12).
However, the funnel boundary and global prescribed
performance rely on specific performance functions,
which limits their adaptability to other control meth-
ods. Moreover, the previous methods are limited to
symmetric performance distributions but the pro-
posed SPP is applicable to both symmetric and asym-
metric cases, thereby enhancing its applicability to
more general cases. In this paper, we employ asym-
metric TPP as the baseline, which not only provides
a tighter allowable set but also limits overshoot per-
formance during the initial interval of the Entry
Capture Problem.

4 Coded Event-triggered Control for Second-
order System

To clearly illustrate our design methodology, we first
consider the following second-order nonlinear system:{

ẋ1 = f1(x̄1) + g1(x̄1)x2,

ẋ2 = f2(x̄2) + g2(x̄2)u,
(15)

where x1 and x2 are system states, fi(x̄i) and gi(x̄i),
i = 1, 2, are unknown yet smooth nonlinear functions
satisfying Assumptions 2-3, and u denotes the system
control input.

Step 1: We first define the tracking errors:

e1 = x1 − yd (16)
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e2 = x2 − α1, (17)

where α1 represents the virtual control input to be de-
fined shortly. In order to guarantee e1 satisfying SPP
(10) for all t ≥ 0, we introduce the following error trans-
formation function

z1 = ln

(
El + e1
Eu − e1

)
(18)

then, by invoking (11)-(12) and (17), its time derivative
is

ż1 = µ1ė1 + µ2 = µ1(f1 + g1e2 − ẏd + g1α1) + µ2 (19)

where µ1 = ℓ(Eu +El) and µ2 = ℓ((ėl − η̇l)(Eu − e1)−
(ėu + η̇u)(El + e1)) and ℓ = 1

(e1+El)(Eu−e1)
. From (11)-

(14) and the property (iv) in Definition 2, it can be de-
rived that Eu(t)+El(t) > 0 and (Eu(t)− e1(t))(El(t)+
el(t)) > 0 are bounded functions for e1(t) in the com-
pact set Ωe1 = {e1(t) ∈ R : −El(t) < e1(t) < Eu(t)}.
Therefore, we have µ1 ̸= 0 and µ1 ∈ L∞. Then, the time
derivative of 1

2z
2
1 along (19) is:

z1ż1 = z1µ1(f1 + g1e2 − ẏd) + z1µ1g1α1 + z1u2

= z1µ1g1α1 + Ξ1, (20)

where Ξ1 = z1µ1(f1 + g1e2 − ẏd) + z1µ2. Upon using
Assumptions 1-3 and Young’s inequality, we have

− z1µ1ẏd ≤ g
1
z21µ

2
1ẏ

2
d +

1

4g
1

, (21)

z1µ1f1 ≤ g
1
z21µ

2
1b

2
1ϕ

2
1 +

1

4g
1

, (22)

z1µ1g1e2 ≤ g
2
z21µ

2
1e

2
2 +

ḡ21
4g

2

, (23)

z1µ2 ≤ g
1
z21µ

2
2 +

1

4g
1

. (24)

Therefore, Ξ1 in (20) is bounded by

Ξ1 ≤ g
1
θ1z

2
1Φ1 + g

2
z21µ

2
1e

2
2 +

3

4g
1

+
ḡ21
4g

2

(25)

with

θ1 = max
{
1, b21

}
, (26)

Φ1 = µ2
1ẏ

2
d + µ2

1ϕ
2
1 + µ2

2. (27)

We develop the virtual control input α1 as

α1 = − 1

µ1
(c1z1 + z1θ̂1Φ1), (28)

˙̂
θ1 = r1z

2
1Φ1 − σ1θ̂1, θ̂1(0) ≥ 0 (29)

where c1, r1, and σ1 are positive constants, and θ̂1 is the
estimation of θ1.

Consider the following Lyapunov function

V1 =
1

2
z21 +

g
1

2r1
θ̃21,

where θ̃1 = θ1− θ̂1. Then, from (20), (25), (28) and (29),
its time derivative can be derived as

V̇1 =z1µ1g1α1 + Ξ1 −
g
1

r1
θ̃1

˙̂
θ1

≤− c1g1z
2
1 + g

2
z21µ

2
1e

2
2 +

3

4g
1

+
ḡ21
4g

2

+
g
1
σ1

r1
θ̃1θ̂1.

Based on the definition of θ̃1, it yields

θ̃1θ̂1 = θ̃1(θ1 − θ̃1) ≤ −1

2
θ̃21 +

1

2
θ21.

We then have

V̇1 ≤− c1g1z
2
1 − σ̄1θ̃

2
1 + g

2
z21µ

2
1e

2
2 + ε1, (30)

where σ̄1 =
g
1
σ1

2r1
and ε1 = 3

4g
1

+
ḡ2
1

4g
2

+
g
1
σi

2r1
θ21 is a bounded

signal. Notice that the item g
2
z21µ

2
1e

2
2 will be tackled in

the next step.

Step 2: From (15) and (17), the time derivative of e2 is

ė2 = ẋ2 − α̇1 = f2 + g2u− α̇1, (31)

with

α̇1 =
∂α1

∂x1
(f1 + g1x2) + ∆α1, (32)

where ∆α1 =
∑1

k=0
∂α1

∂y
(k)

d

y
(k+1)
d +

∑1
k=0

∂α1

∂ρ(k) ρ
(k+1) +∑1

k=0
∂α1

∂η
(k)
u

η̇
(k+1)
u +

∑1
k=0

∂α1

∂η
(k)

l

η̇
(k+1)
l + ∂α1

∂θ̂1

˙̂
θ1, which is

computable. According to the definition of ∆v(t), we can
obtain

u(t) = v(t)−∆v(t), |∆v(t)| ≤ p̄, (33)

where p̄ = max{ω0p
0, ω1p, . . . , ωscp

sc} is a positive con-
stant. We then consider the Lyapunov function V2:

V2 = V1 +
1

2
e22 +

g
2

2r2
θ̃22, (34)

7



where θ̃2 = θ2 − θ̂2, θ̂2 is the estimation of θ2 in (38),
and r2 is a positive constant. The time derivative of V2,
along (31)-(33), is derived

V̇2 =V̇1 + e2ė2 −
g
2

r2
θ̃2

˙̂
θ2

≤− c1g1z
2
1 − σ̄1θ̃

2
1 + e2g2v −

g
2

r2
θ̃2

˙̂
θ2 + Ξ2 + ε1 (35)

where Ξ2 = e2(f2 − ∂α1

∂x1
(f1 + g1x2)−∆α1)− e2g2∆v +

g
2
z21µ

2
1e

2
2. Using Young’s inequality, we can also expand

Ξ2 as inequalities in (21)-(24). Note that the control in-
put signal will be updated whenever the coded event-
triggered scheme (4) is triggered, which indicates that
|∆v| ≤ ωpβ holds. As ω, β and p are all bounded num-
bers, from (33), it can be derived that p̄ is a bounded
constant, leading to:

− e2g2∆v ≤ g
2
ē22 +

ḡ22
4g

2

p̄2. (36)

It yields that

Ξ2 ≤ g
2
θ2e

2
2Φ2 +

3

4g
2

+
ḡ21
4g

2

+
ḡ22
4g

2

p̄2, (37)

where

θ2 = max
{
1, b21, b

2
2

}
, (38)

Φ2 = (
∂α1

∂x1
ϕ1)

2 + (
∂α1

∂x1
x2)

2+(∆α1)
2 + µ2

1z
2
1+ϕ2

2+1.

(39)

To move forward, the actual control is developed as

v(t) = −(c2e2 + θ̂2e2Φ2), (40)

˙̂
θ2 = r2e

2
2Φ2 − σ2θ̂2, θ̂2(0) ≥ 0 (41)

where c2, r2, σ2 > 0 and θ̂2 is the estimation of θ2. By
(37)-(41), the inequality (35) can be rewritten as

V̇2 ≤− c1g1z
2
1 − σ̄1θ̃

2
1 − g

2
c2e

2
2 +

σ2g2
r2

θ̃2θ̂2

+
3

4g
2

+
ḡ21
4g

2

+
ḡ22
4g

2

p̄2 + ε1. (42)

Based on the definition of θ̃2, we obtain

θ̃2θ̂2 = θ̃2(θ2 − θ̃2) ≤ −1

2
θ̃22 +

1

2
θ22. (43)

By substituting (43) into (42) yields

V̇2 ≤− c1g1z
2
1 − σ̄1θ̃

2
1 − g

2
c2e

2
2 − σ̄2θ̃

2
2 + ε2, (44)

where σ̄2 =
g
2
σ2

2r2
and ε2 =

g
2
σ2

2r2
θ22+

3
4g

2

+
ḡ2
1

4g
2

+
ḡ2
2

4g
2

p̄2+ε1.

To summarize, we establish the following theorem.

Theorem 1 Consider the second-order nonlinear sys-
tem (15) under Assumptions 1-3. The virtual control α1

and the actual control input v(t) are developed in (28)
and (40). The adaptive laws are given by (29) and (41).
Following the Coded Event-triggered Scheme (3)-(4), the
proposed control method guarantees the following.

(i) The tracking error e1 satisfies Entry Capture Prob-
lem property since it is strictly constrained by the
prescribed performance: −el(t) < e1(t) < eu(t)
right after an user-given finite time T as presented
in Definition 1;

(ii) All signals in the closed-loop system are guaranteed
to be bounded regardless of initial conditions; and

(iii) Zeno behavior is excluded.

Proof: By revisiting (44), there is

V̇2 ≤− c1g1z
2
1 − σ̄1θ̃

2
1 − g

2
c2e

2
2 − σ̄2θ̃

2
2 + ε2

≤− πV2 + ε2,

where π = min{2c1g1, 2c2g2, 2
r1σ̄1

g
1

, 2 r2σ̄2

g
2

} > 0. Subse-

quently, we can have

0 ≤ V2(t) ≤
ε2
π

+ (V2(0)−
ε2
π
)e−πt.

It can be concluded that V2 is bounded which guaran-
tees the boundedness of z1, e2, θ̃1, and θ̃2. From the
error transformation function in (18), it is certain that
−El(t) < e1(t) < Eu(t) holds due to z1 ∈ L∞. Accord-
ing to Lemma 1, e1 satisfies −el(t) < e1(t) < eu(t) for
t ≥ T , which indicates that e1 follows the Entry Capture
Problem in Definition 1.

Next, other tracking signals in the closed-loop system
are proved to be bounded. Considering the adaptive laws

(29) and (41), θ1, θ2,
˙̂
θ1 and

˙̂
θ2 remain bounded. The

virtual control input α1 defined in (28) belong to L∞.
Moreover, by (40), the boundedness of actual control
signal v(t) is guaranteed. From (16) and (17), it can be
derived that x1 and x2 also keep bounded. All the closed-
loop signals are therefore bounded for the second-order
nonlinear system under any initial condition.

To illustrate the exclusion of Zeno behavior, the time
derivative of ∆v(t) during the inter-execution interval is
given

∆v̇(t) = v̇(t)− v̇(tk) = v̇(t), tk ≤ t < tk+1,

where k = 1, 2, . . . By (40), it yields v̇(t) =
∑2

k=1
∂v
∂xk

ẋk+∑2
k=0

∂v

∂y
(k)

d

y
(k+1)
d +

∑2
k=1

∂v
∂θ̂k

˙̂
θk +

∑2
k=0

∂v
∂ρ(k) ρ

(k+1) +

8



∑2
k=0

∂v

∂η
(k)
u

η̇
(k+1)
u +

∑2
k=0

∂v

∂η
(k)

l

η̇
(k+1)
l . In accordance

with Assumptions 1-3, Definition 2, prescribed perfor-
mance functions eu(t) and el(t) defined in (13)-(14),
and the fact that ė2 governed by (31) and other closed-
loop signals remain bounded, the boundedness of v̇ is
ensured. For convenience, the upper bound of |v̇| can
be specified by a positive constant κ. Therefore, we can
obtain

|∆v̇(t)| ≤ κ, tk ≤ t < tk+1,

where k = 1, 2, . . . Given that limt→t+
k
|∆v| = 0 and

limt→t−
k+1

|∆v| = ωpβ , it indicates that there exists a

strictly positive constant t∗ = ωpβ

κ such that

tk+1 − tk ≥ t∗, k = 1, 2, . . .

with t∗ denoting minimal inter-transmission interval.
Thereby, the Zeno behavior is excluded and the proof is
completed. 2

5 Coded Event-triggered Control for high-
order System

In this section, the proposed CEC will be extended to
nth-order systems (1). Instead of step-by-step proce-
dure, its control design is omitted here for conciseness
since its stability analysis is identical to the second-order
system (15).

We first define the tracking error variables:

e1 = x1 − yd (45)

ei = xi − αi−1, i = 2, . . . , n, (46)

where αi−1 represent virtual control inputs. In order
to guarantee e1 fulfilling the Self-adjustable Prescribed
Performance (10), we introduce the following error trans-
formation function:

z1 = ln

(
El + e1
Eu − e1

)
(47)

Then, the virtual control inputs are designed as

α1 = − 1

µ1
(c1z1 + z1θ̂1Φ1), (48)

αi = −(ciei + θ̂ieiΦi), i = 2, . . . , n− 1, (49)

and the adaptive laws are updated by

˙̂
θ1 = r1z

2
1Φ1 − σ1θ̂1, θ̂1(0) ≥ 0, (50)

˙̂
θi = rie

2
iΦi − σiθ̂i, θ̂i(0) ≥ 0, (51)

for i = 2, . . . , n− 1, where ci, ri and σi, i = 1, . . . , n− 1,

are positive constants. θ̂i is the estimation of θi, and Φi

is a computable function, where θi and Φi are

θi = max{1, b21, b22, . . . , b2i }, i = 1, . . . , n− 1, (52)

Φ1 = µ2
1ẏ

2
d + µ2

1ϕ
2
1 + µ2

2, (53)

Φ2 = (
∂α1

∂x1
ϕ1)

2+(
∂α1

∂x1
x2)

2 + (∆α1)
2 + µ2

1z
2
1+ ϕ2

2, (54)

Φi =

i−1∑
k=1

(
∂αi−1

∂xk
ϕk)

2 +

i−1∑
k=1

(
∂αi−1

∂xk
xk+1)

2 + (∆αi−1)
2

+ e2i−1 + ϕ2
i , i = 3, . . . , n− 1, (55)

where µ1 = ℓ(Eu+El) and µ2 = ℓ(ėl−η̇l)(Eu−e1)−(ėu+
η̇u)(El+e1) and ℓ = 1

(e1+El)(Eu−e1)
. We can also derived

thatEu(t)+El(t) > 0 and (Eu(t)−e1(t))(El(t)+el(t)) >
0 are bounded functions if e1(t) belongs to a compact set
Ωe1 = {e1(t) ∈ R : −El(t) < e1(t) < Eu(t)}. Therefore,
we have µ1 ̸= 0 and µ1 ∈ L∞. Identically, the actual
control input and the adaptive law are developed:

v(t) = −(cnen + θ̂nenΦn), (56)

˙̂
θn = rne

2
nΦn − σnθ̂n, θ̂n(0) ≥ 0, (57)

where rn, rn, σn > 0, θ̂n denotes the estimation of θn
and Φn is a computable function. Similar to (52)-(55),
we have

θn = max{1, b21, b22, . . . , b2n}, (58)

Φn =

n−1∑
k=1

(
∂αi−1

∂xk
ϕk)

2 +

n−1∑
k=1

(
∂αi−1

∂xk
xk+1)

2 + (∆αn−1)
2

+ e2n−1 + ϕ2
n + 1. (59)

In the following theorem, we summarize the result on the
Coded Event-triggered Control for the nth-order non-
linear systems.

Theorem 2 Consider nth-order nonlinear systems (1)
under Assumptions 1-3. If the control inputs and the
adaptive laws are designed as (52)-(57), by adopting the
Coded Event-triggered Scheme (3)-(4), we can guarantee
the following properties:

(i) Given any initial condition, the tracking error
e1(t) is constrained by the prescribed performance:
−el(t) < e1(t) < eu(t), for t ≥ T with T being
a preassigned finite time, that is, e1 fulfills Entry
Capture Problem properties in Definition 1;

(ii) All signals in the closed-loop system are guaranteed
to be bounded regardless of initial conditions;

(iii) Zeno behavior is excluded.

Proof: Consider the following Lyapunov candidates:

V1 =
1

2
z21 +

g
1

2r1
θ̃21,
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Vi = Vi−1 +
1

2
e2n +

g
n

2rn
θ̃2n.

where θ̃i = θi − θ̂i, i = 1, . . . , n. Similar to the stability
analysis in Theorem 1, it can be also derived:

V̇n ≤− c1g1z
2
1 −

n∑
k=2

ckgke
2
k −

n∑
k=1

σ̄kθ̃
2
k + εn

≤− πVn + εn,

where π = min{2c1g1, . . . , 2cngn, 2
r1σ̄1

g
1

, . . . , 2 rnσ̄n

g
n

} >

0, εn =
g
n
σn

2rn
θ2n + 3

4g
n

+
ḡ2
n−1

4g
n

+
ḡ2
n

4g
n

p̄2 + ε1. In ac-

cordance with (3)-(4), we have |∆v(t)| ≤ p̄, where
p̄ = max{ω0p

0, ω1p, . . . , ωscp
sc} is a bounded constant.

Then, we obtain

0 ≤ Vn(t) ≤
εn
π

+ (Vn(0)−
εn
π
)e−πt.

It indicates that Vn(t) is bounded, leading to z1,

e2, . . . , en, θ̃1, . . . , θ̃n ∈ L∞. According to the error
transformation function (47), we can derive that e1 is
evolving within the SPP, namely, −El(t) < e1(t) <
Eu(t). Based on Lemma 1, the Entry Capture Problem
is achieved, that is, −el(t) < e1(t) < eu(t) for all t ≥ T .

Next, the boundedness of other signals in the closed-
loop system is proved. From (50)-(52) and (57)-(58),

and the definition of θ̃i, it leads to θ̂i and
˙̂
θi ∈ L∞, for

i = 1, . . . , n. By (48)-(49) and (56), the boundedness of
control input signals α1, . . . , αn−1, v is guaranteed. Con-
sidering (45)-(46), x1, . . . , xn belong to L∞. Therefore,
all signals in the closed-loop system are bounded.

To verify the exclusion of Zeno phenomenon, the time
derivative of ∆v(t) before next triggering is given

∆v̇(t) = v̇(t)− v̇(tk) = v̇(t), tk ≤ t < tk+1.

where k = 1, 2, . . . By invoking (56), there has

v̇(t) =
∑n

k=1
∂v
∂xk

ẋk+
∑n

k=0
∂v

∂y
(k)

d

y
(k+1)
d +

∑n
k=1

∂v
∂θ̂k

˙̂
θk+∑n

k=0
∂v

∂ρ(k) ρ
(k+1)+

∑n
k=0

∂v

∂η
(k)
u

η̇
(k+1)
u +

∑n
k=0

∂v

∂η
(k)

l

η̇
(k+1)
l .

Since all the signals in the closed-loop system are
bounded, from Assumptions 1-3, Definition 2, pre-
scribed performance functions eu(t) and el(t) defined in
(13)-(13), v̇(t) is, therefore, bounded by

|∆v̇(t)| ≤ κ, tk ≤ t < tk+1,

where k = 1, 2, . . . Given that limt→t+
k
|∆v| = 0 and

limt→t−
k+1

|∆v| = ωpβ , it indicates that there exists a

strictly positive constant t∗ = ωpβ

κ such that

tk+1 − tk ≥ t∗, k = 1, 2, . . .

with t∗ being the minimal inter-transmission interval.
Thereby, the Zeno behavior is excluded and proof is com-
pleted. 2

Remark 5 We provide a guideline for the parameter se-
lections. For the settling time T in (2), its value should
satisfy 0 < Tmin < T where Tmin is the minimum time
necessary for signal processing. This assumption is widely
used in existing results Zhao et al. (2021); Song and Zhou
(2018). If T is chosen too small, although faster conver-
gence, it could lead to large control signals. Considering
the control parameters ci and σi, their values will deter-
mine the convergence rate and tracking accuracy. Note
that their extreme values may lead to large control inputs,
making systems sensitive to external disturbances. There-
fore, these parameters’ selections should consider the bal-
ance between tracking performance and system ability.

6 Simulation Results

To illustrate the effectiveness of our proposed CEC, some
comparative simulations are conducted in this section.
Consider the following second-order nonlinear system:{

ẋ1 = f1(x̄1) + g1(x̄1)x2,

ẋ2 = f2(x̄2) + g2(x̄2)u,
(60)

where f1(x̄1) = x2
1 + 0.1 cos(0.5x1), f2(x̄2) = 4x1x2 +

x1e
−|x2| + 0.05 sin(x1x2), g1(x̄1) = 5 + 0.5 sin(x1), and

g2(x̄2) = 3 + 0.2 cos(x1x2). By Assumption 2, it can be
derived that |f1(x̄1)| ≤ x2

1 + 0.1 with b1 = 1 and ϕ1 =
1 + x2

1, and |f2(x̄2)| ≤ 3x2
1 + 2x2

2 + 0.3 with b2 = 3 and
ϕ2 = x2

1 + x2
2 +1. The initial condition is set by x1(0) =

1.5 and x2(0) = 0. The desired tracking trajectory is
yd = sin(0.5t). The control parameters are selected as:
m = 3 (i.e., β = 0, 1, 2, 3 and ω = 0.3, 0.4, 0.5, 0.6),
T = 4, c1 = 2, c2 = 15, σ1 = σ2 = 0.01, r1 = r2 = 0.002,
l = 0.6, λ = 2, δ = 0.5, ρ0 = 1, ρ∞ = 0.4, and ς = 1.
Moreover, our CEC is compared with our control design
with relative threshold Xing et al. (2018) and switching
threshold Xing et al. (2016).

(Case I) The simulation results of our CEC under dif-
ferent threshold strategies are shown in Figs. 3-4. From
Fig. 3, the initial tracking error e1(0) violates the ini-
tial performance constraints colored in brown, leading to
the classical prescribed control methods being inappli-
cable. By our CEC, we can regulate e1(0) into the allow-
able set within the given time T . With the aid of SPP,
bounded yet customizable virtual performance bound-
aries are established during the initial interval as shown
in blue color. Therefore, the severe overshoot or uncon-
strained behaviors over [0, T ) are effectively avoided. On
the other hand, the triggering time of three threshold
strategies is shown in Fig. 4, and the number of trigger-
ing events and bit assumptions are summarized in the
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second and third columns of Table 6, in which we ex-
clude the initial signal transmission. Due to m = 3 in
the CES, it indicates that only a 3-bit string is transmit-
ted for each communication when the event condition is
satisfied. Compared with the relative threshold and the
switching threshold where control inputs should be en-
coded by 8-bit strings before each transmission, our CES
consumes fewer bits while maintaining the tracking per-
formance, which is significant for the practical system
with limited communication bandwidth.
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0.5
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Fig. 3. The tracking error e1(t) for case I.
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Fig. 4. The triggering time for case I.

Table 2
The number of triggering events for different strategies

Case I Case II

different strategies trigger number bit consumption trigger number bit consumption

CES 332 996 460 1380

Relative threshold 339 2712 X X

Switching threshold 373 2984 403 3224

0 5 10 15 20
-0.5

0

0.5

1

1.5

2

2.5

5 5.1 5.2 5.3

-0.2

0

0.2

Fig. 5. The tracking error e1(t) for case II.
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Fig. 6. The triggering time for case II.

(Case II) To further illustrate the effectiveness of our
CES, we consider the introduction of external distur-
bance d(t) = 2 cos 0.5t during 5-10s in the second row of
(60). The comparative results under different threshold
strategies are shown in Figs. 5-6. Due to the signal dis-
tortion problem associated with the relative threshold
strategy as discussed in Section 3.1, the tracking perfor-
mance is severely degraded with e1(t) depicted by the
green line violating performance constraints at 5.24s, as
illustrated in Fig. 5. It makes the control design suffer
from the singularity problem. Note that our CES and
switching threshold strategy accomplish a good balance
between tracking performance and network constraints.
Therefore, they can guarantee the tracking errors within
the allowable set even the introduced external distur-
bances. However, from the fourth and fifth columns of
Table 6 and the triggering time in Fig. 6, our CES strat-
egy can consume fewer bit resources compared to the
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switching threshold one. On the other hand, for each
communication case, we only transmit an encrypted 3-
bit string through the public network rather than the
sensitive real control input in the switching threshold
strategy. Therefore, our control design reduces the com-
munication burden and addresses the security concern
at the same time.

7 Conclusion

A Coded Event-triggered Control has been designed for
a class of nonlinear systems under any initial condition.
We have shown that such control method can not only
consume less communication bandwidth, but also en-
hance secure communication capability, since only m-
length string is encoded and transmitted for each com-
munication. An effort has been also made on developing
Self-adjustable Prescribed Performance such that the
initial condition-dependence restriction is removed, al-
lowing the Entry Capture Problem to be collectively ad-
dressed. Note that our communication protocol is based
on the magnitude of control input. In the future, we
would like to design the protocol from the changing rate
of the control signal to further enhance the tracking per-
formance.
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