
Structure-Preserving Model Order Reduction
for Nonlinear DAE Models of Power Networks

Muhammad Nadeem and Ahmad F. Taha

Abstract—This paper deals with the joint reduction of dynamic
states (internal states of generator, solar, and loads, etc) and algebraic
variables (states of the network e.g., voltage and phase angles) of a
nonlinear differential-algebraic equation (NDAE) model of power
networks. Traditionally, in the current literature of power system model
order reduction (MOR), the algebraic constraints are usually neglected
and the power network is commonly modeled via a set of ordinary
differential equations (ODEs) instead of NDAEs. Thus, reduction is
usually carried out for the dynamic states only and the algebraic vari-
ables are kept intact. This leaves a significant part of the system’s size
and complexity unreduced. This paper addresses this aforementioned
limitation, by jointly reducing both dynamic and algebraic variables.
As compared to the literature the proposed MOR techniques herein are
endowed with the following features: (i) no system linearization is re-
quired, (ii) requires no transformation to an equivalent or approximate
ODE representation, (iii) guarantee that the reduced order model to be
NDAE and thus preserves the differential-algebraic structure of orig-
inal power system model, and (iv) can seamlessly reduce both dynamic
and algebraic variables while maintaining high accuracy. Case studies
performed on a 2000-bus power system reveal that the proposed MOR
techniques are able to reduce system order while maintaining accuracy.

Index Terms—Model order reduction, Balanced truncation,
Nonlinear differential-algebraic equations models.

I. INTRODUCTION AND PAPER CONTRIBUTIONS

POwer systems form large-scale, complex networks that usually
require large state-space expressions for accurate modeling.

The complexity and size of power systems are even further
increasing with the integration of renewables and other (power-
electronics)-based distributed resources. Thus, the research area
of model order reduction (MOR) in power systems is becoming
highly crucial. Specifically, for the design of advanced feedback
controllers (e.g., H2, H∞, and LQR/LQG), the design of reduced-
order model (ROM) is of extreme importance. This is because the
order of these controllers matches the order of the system, thus for
a very large system with thousands of state variables, the design
of these controllers becomes intractable [1], [2].

The idea of model reduction is not new in power systems
research, and significant relevant research has been proposed in the
past two decades. Generally speaking, there are two main MOR
philosophies in the current literature of power systems. The first phi-
losophy divides the power system into study (internal) and external
areas. The study area is represented in detail, while the external area
is simplified or approximated. This approach leverages coherency-
based methods [3], [4], which are rooted in the identification of
coherent generator groups within the power system. The reduction
process generally involves three steps: (i) identifying coherency
among generators, (ii) dynamically reducing the system by aggre-
gating the network and generators, and (iii) potentially aggregating
excitation controllers also in later stages. These coherency-based
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methods are highly regarded for their reliability in achieving dy-
namic equivalence in power systems. However, a notable limitation
is the potential inability to reduce specific parts of the power
network due to the inherent nature of coherency grouping [5].

The second philosophy draws from control theory literature,
focusing on input-output-based model reduction methodologies.
These algorithms are theoretically robust and general purpose, mak-
ing them suitable for a wide range of applications beyond traditional
synchronous machines, including renewable resources. Our work
focuses on such input-output-oriented MOR techniques. These types
of MOR methods are further classified into three main categories.
The first category is based on Krylov subspace or moment-
matching-based methods, which approximate the original system by
matching moments of the system’s transfer function. The second
category relies on modal truncation-based methods like proper
orthogonal decomposition (POD). These methods involve reducing
the system by truncating less significant modes, based on their
contribution to the system’s dynamics. The third category forms
balanced realizations or Gramian-based methods such as balanced-
POD (BPOD) and balanced truncation (BT). The aim herein is to
reduce the system by identifying and retaining the most control-
lable and observable states—Gramians are matrices that quantify
observability and controllability of dynamic systems. The readers
are referred to [6], [7] for further details about these techniques.

These MOR methodologies have also been widely applied to
power systems to construct various ROMs. For instance, authors in
[1], [8] have proposed moment matching-based MOR techniques.
In [9], [10], researchers have proposed balanced realization-based
MOR algorithms for linear ODE-based power system models.
Later, these works have been extended in [5] to propose MOR for
nonlinear ODE-based power system models where instead of using
Grammians, empirical controllability and observability covariance
matrices are used to balance and truncate the system. Similarly,
in [11], [12] various modal truncation-based reduction algorithms
have been proposed. Readers are referred to [13], [14] for a detailed
survey of the existing MOR approaches in power systems.

However, in most of the current MOR power system literature,
the algebraic constraints (modeling power/current balance) are
usually neglected and the power system is modeled via a set of
linear ODEs (or converted to linear ODEs) in order to apply MOR
concepts from linear system control theory. The recent work in
[5] has considered nonlinearity in their design. Yet again, the
algebraic constraints are neglected and thus MOR is only carried
out for dynamic variables while keeping the algebraic variables
intact. This is problematic as algebraic variables often constitute
a large portion of the model, representing essential electrical
quantities across the network. Ignoring these in the reduction
process means a significant part of the system’s complexity and
size remains untouched, limiting the effectiveness of MOR. Also,
considering the complete NDAE dynamics is essential because the
linear/nonlinear ODE-based power system models cannot capture
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the effects of topological changes (like the tripping of transmission
lines, etc.) [15]. Furthermore, it is unclear how to include dynamics
of loads and renewables in the ODE-based models [16].

The studies that focus on the DAE power system models such
as [10], [17] also require the conversion of power system models
to an equivalent ODE representation. This is done by finding an
explicit relationship of the algebraic variable (through the algebraic
constraint model) and substituting it back into the dynamic
system [10]. However, such equivalent ODE representation is only
possible for linear-DAE (LDAE) systems and cannot be applied to
NDAE power systems as there is no explicit equation for algebraic
variables because of the presence of nonlinearity. Notice that the
power system algebraic variables are known to be highly nonlinear
as the algebraic constraints are power/current balance equations
which are characterized by trigonometric terms such as sines and
cosines, reflecting the physical laws of electrical networks. Thus,
algebraic states cannot be isolated (or expressed explicitly) and
plugged back into the dynamic system as done in the case of the
LDAE system in [10].

Some studies have been carried out using Krylov-based method-
ology such as [1] which does not require the conversion of system
to an equivalent ODE and can directly be applied to the DAE
system. However, they are also limited to LDAE power system
models. Also, the MOR obtained using the Krylov-based method
can be of higher order. This is because the constructed lower-order
orthogonal basis depends on the number of system inputs, for ex-
ample to match the first l moments of the system, the dimension of
the reduced order orthogonal basis needs to be l×nu (where nu are
the number of inputs) [18]. Thus, in a system with a large number
of inputs (such as power systems), the ROM can be of higher order.
Paper Contributions. In this paper, we present two MOR
techniques that can directly be applied to the NDAE representation
(without requiring power system models to be converted
to equivalent ODE) of power systems and can reduce both
dynamic and algebraic variables simultaneously to construct the
corresponding ROM. The technical contributions are as follows:

• We propose two model reduction approaches for nonlinear
power system models. One approach offers reducing the
system order based on the modes (or the energy content) in
the time-domain transient simulation data while the second
approach, in contrast, offers designing ROM via balanced-
realization (using empirical controllability and observability
covariances). Since both proposed techniques adopt distinct
approaches to designing ROM, it is unclear how they perform
in terms of realizing full system dynamics. As compared
to [1], [10], the proposed methods do not rely on system
linearization and/or equivalent ODE transformation—and as
compared to [5], the proposed techniques can simultaneously
reduce algebraic variables with dynamic variables.

• Due to the diagonal structure of the proposed coordinate
transformation matrix, the presented techniques ensure that the
ROMs are NDAEs similar to the original power system model.
This preserves the differential-algebraic structure of power
networks. This also allows a seamless transition from reduced
order to the full order dynamic and algebraic state variables.

• Thorough time-domain simulation studies under different
transient conditions have been carried out to assess the perfor-
mance of the proposed techniques. The considered test system

includes: (i) modified IEEE 39-bus system modeling detailed
conventional power plants dynamics, solar plant acting in grid-
forming mode, composite load dynamics, and algebraic con-
straint models, and (ii) a 2000-bus Texas network with com-
prehensive 11th-order conventional power plant models. Fur-
thermore, to showcase the advantage of the proposed MOR
techniques a comparison with the commonly used linear ODE-
based balance truncation method has also been presented.

Paper Organization. Sec. II presents the advanced power system
model considered in this study. Sec. III delineates the problem
formulation and scope. Sec. IV and V present the two MOR
algorithms for NDAE power system models. Case studies are
presented in Sec. VI.
Notation. Capital bold letters are used to represent matrices, as
in A while small capital bold letters, such as b, denote vectors.
All the sets are represented in calligraphic fonts, such as M or
R. The symbol Ru×v represents a real-valued matrix of size
u×v, similarly, Rk denotes a real-valued column vector with k
elements. The notations O and I denote zero and identity matrix
of appropriate dimensions, respectively. The union of two sets
is denoted by ∪. The symbol Sn×n

++ represents a square positive
definite matrix of size n×n while the notation ej represents a
column vectors of zeros with 1′s only at location j.

II. NONLINEAR DAE POWER SYSTEM MODELS

We consider a grid model with S solar power plants, G steam
and hydro-based conventional power plants, and Lp, Lk, Lz

number of constant power loads, motor-based, and constant
impedance loads, respectively. The overall power system is
modeled as a graph with N ={1,...,N} as the set of nodes/buses
and E as the set of edges or transmission lines. The set of buses
are grouped into various types: S = {1,...,S} represents buses
with PV power plants, G = {1,...,G} denotes buses connected
to the conventional power plants, L includes buses that contain
constant power/impedance and motor-based loads, while U collects
non-unit buses that are not connected to any elements.

The overall grid model is mathematically represented using a
set of NDAEs given as follows [2]:

ẋ(t)=g(xd(t), xa(t), u(t), w(t)) (1a)
0=h(xd(t), xa(t), u(t), w(t)). (1b)

In model (1), the set of differential equations (1a) encompasses the
dynamics of PV plants, conventional power plants, and composite
loads dynamics, while the algebraic constraint (1b) models the
current/power balance equations of the electrical network. The
vector xd(t) ∈ Rnd represents dynamic states and it lumps the
dynamic variables of conventional power plants, PV plants, and
composite load dynamics as xd=

[
x⊤
G x⊤

R x⊤
L

]⊤
where xG

are the states of conventional power plants, xR denotes the states
of PV plants, and xL represents the states of dynamic loads. The
notation xa(t)∈Rna denotes algebraic states and it contains the
states of the network (voltage and current phasors). The vector
w(t) =

[
P⊤
d I⊤]⊤ ∈ Rnw contains load demand Pd and sun

irradiance I while u(t)=
[
u⊤
G u⊤

R

]⊤∈Rnu defines the system
control inputs with uG and uR denoting the control inputs of gener-
ators and solar farms, respectively. Further detailed explanations of
these vectors and complete dynamical equations (set of differential
equations) describing the models of PV plants, conventional power
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plants, composite load dynamics, and system algebraic constraint
model used in this study are given in Appendix A.

By considering x(t) =
[
x⊤
d x⊤

a

]⊤ ∈Rn as the overall state
vector and y(t) ∈ Rp as the system output we can rewrite the
electrical grid model (1) in the following compact format:

Eẋ=Ax + Buu + f(x,u,w) + Bww (2a)
y=Cx (2b)

where E ∈ Rn×n is a singular binary matrix encoding system
algebraic model with rows of zeros, function f(x,u,w) represents
the corresponding nonlinearity, while the rest of the real-valued
matrices Bu∈Rn×nu , A∈Rn×n, Bw∈Rn×nw maps the system
control inputs u, state vector x, and the disturbance vector w
in the power system dynamics. The output from power system
model is considered to be bus voltages and current phasors which
are mapped from state vector x via output matrix C ∈ Rp×n.
Furthermore, throughout the paper, we assume that in the NDAE
model (2), the pair (E,A) is regular, and the power system model
is observable and controllable. These assumptions are common
and power system NDAEs are known to be regular, controllable,
and observable [2], [19].

III. PRELIMINARIES AND PROBLEM DESCRIPTION

Generally speaking, the model reduction process involves
transforming the original high-dimensional system into a new
coordinate system where the states are ordered based on their
importance (defined through balancing controllability and
observability in the defined transformations or dominance in
mode-based MOR). This transformation enables the identification
and retention of the most significant states while discarding those
with minimal impact on the system’s input-output behavior. The
outcome is a reduced-order model that approximates the behavior
of the original system with far fewer states—making the ROMs
more amenable to real-time control and state estimation.

Having said that, to perform MOR let x(t) =Wx̃(t) be the
coordinate transformation with W ∈Rn×n representing the non-
singular transformation matrix and x̃∈Rn as the new set of coordi-
nates where states are hierarchically ordered. Then one can simply
truncate W as WR=WT ∈Rn×r with T =

[
I O

]⊤∈Rn×r

and thus choose the first r<<n dominant states of the transformed
system while removing the rest. This dramatically reduces the
model’s complexity while retaining most of the system input-
output behavior. To construct the reduced order model, the Galerkin
projection [7] is commonly used, which involves projecting the
dynamics of the original system onto the subspace spanned by
the retained states. For example, assuming appropriate WR for
the NDAE model (2) has been determined then the corresponding
ROM using Galerkin projection can be constructed as:

Erż=Arz + Buru + WLf(WRx̃,u,w) + Bwrw (3a)
y=Crz (3b)

where z ∈ Rr represents the state of the reduced system and
WL = W−1

R ∈ Rr×n is the left side coordinate transformation
matrix. The rest of the matrices in (3) are given as follows:

Ar=WLAWR, Bur=WLB, Bwr=WLBw (4a)
Cr=CWR, Er=WLEWR. (4b)

Throughout this paper, the subscript r is used to represent the
parameters associated with ROM. Consequently, the main objective

of the paper is to design appropriate coordinate transformation W
and truncation matrix T for the complete NDAE power system (2),
and then construct a structure-preserving (meaning Er needs to be
singular and thus the ROM (3) should remain NDAE similar to the
full order model) reduced model that retains the same input-output
behavior, while having significantly fewer number of states or
equations than the original power system model (2). The proposed
MOR techniques are proposed in the next sections.

IV. STRUCTURE-PRESERVING POD (SP-POD) MOR
Here we introduce SP-POD-based methodology to construct

ROM for the NDAE power system model. Generally speaking, the
POD-based MOR commonly consists of three main steps. Firstly,
the system is simulated under transient conditions, and data is col-
lected. Then, POD is applied to this data set to extract the most sig-
nificant modes or features to construct a coordinate transformation
matrix W . These modes are orthogonal functions that represent
the system’s dynamics in descending order of energy or variance.
Essentially, POD seeks to find a basis that captures the most signif-
icant patterns in the data. Then finally, a reduced model of the sys-
tem is constructed using Galerkin projection as discussed in Sec. III.

Having said that, to propose a POD-based MOR technique
for the NDAE power system models we do the following. First,
time domain simulation for 20sec of model (2) is carried out under
transient conditions (by adding a step disturbance in load demand
as discussed later in Sec. VI) and the dynamic and algebraic states
data are collected and stored separately as follows:

Xd=

 | | | |
xd0 xd1 ··· xdt−1 xdt

| | | |

 (5a)

Xa=

 | | | |
xa0

xa1
··· xat−1

xat

| | | |

 (5b)

where Xd ∈ Rnd×t encapsulates the dynamic system data,
Xa∈Rna×t contain the data for the algebraic variables while xd0 ,
xa0

, and so on represents the trajectories of dynamic and algebraic
states, respectively, at time step 0 to the final time step t.

Next, we find the POD modes of this data by computing the
singular value decomposition (SVD) of matrices Xd and Xa

separately as follows. For the dynamic system data applying SVD
we get Xd=WdΣdΛd, where Σd∈Rnd×nd is a diagonal matrix
that contains the Hankel singular values (HSVs) in descending
order while matrices Λd∈Rt×nd , Wd∈Rnd×nd contains the right
and left singular vectors, respectively. The columns of Wd are
ordered hierarchically from most dominant to least and are referred
to as the POD modes as they capture the most energetic patterns of
the data. Similarly, for Xa we get Xa=WaΣaΛa with matrices
Wa∈Rna×na , Λa∈Rt×na containing the left and right singular
vectors while Σa ∈Rna×na lumping the corresponding singular
values. After determining the POD modes, we construct the final
non-singular coordinate transformation matrix W as follows:

W =blkdiag(Wd,Wa) (6)

where blkdiag construct a block diagonal matrix. The designed
W can transform the NDAE system (2) to a new set of
coordinates where the states are ordered hierarchically from
most important/dominant to least. It is worth mentioning that
because of the block diagonal structure, the designed coordinated
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transformation matrix W guarantees that the transformed model
is always an NDAE similar to the original system. Thus preserving
the essential structure of the original system and hence one can
easily move from one coordinate to another using x=Wx̃ since
W is non-singular. Now, as mentioned earlier in the transformed
coordinate the states are ordered, and then to construct the ROM
we need to truncate the least important states. Hence, we construct
the appropriate truncation matrix T as follows:

Td=
[
Idr 0

]⊤
, Ta=

[
Iar 0

]⊤
, T =blkdiag(Td, Ta) (7)

where Td∈Rnd×nd , and Ta∈Rna×na . In (7) the dimension of Idr
can be determined by examining the magnitude of HSVs contained
in Σd, similarly Iar can be designed based on HSVs in Σa.

Notice that in case t <<nd and/or t <<na, then to simplify
complexity and save computational time one can take eigenvalue
decomposition (ED) of X⊤

d Xd ∈ Rt×t and/or X⊤
a Xa ∈ Rt×t

and then design W as follow: For X⊤
d Xd applying ED we get

X⊤
d XdVd = Vdλd, where Vd encapsulates the corresponding

eigenvectors and λd contains the eigenvalues. Similarly, for
X⊤

a Xa we have XaX
⊤
a Va = Vaλa with matrices Va ∈ Rt×t

and λa ∈ Rt×t lumping the eigenvectors and eigenvalues,
respectively. Then, we design the matrices Wd = XdVdλ

−1
2

d

and Wa =XaVaλ
−1
2

a and finally plugging it in (6) gives us the
final transformation matrix W . The truncation matrix T can be
designed similarly to Eq. (7).

The final step in the proposed SP-POD is the handling of the
nonlinearity. Note that, using the designed T and W we can
express the corresponding ROM of model (2) as given in Eq. (3).
However, the computational complexity of mapping the nonlinear
function WLf(WRx̃,w,u) still depends on the dimension of full
state vector x as:

WL︸︷︷︸
r×n

f(WRx̃,u,w)︸ ︷︷ ︸
n×1

. (8)

Therefore, we reduce the nonlinearity using the discrete empirical
interpolation method (DEIM)-based approach [7]. The main goal is
to handle the nonlinear terms effectively in a reduced-dimensional
space Rr instead of the full-dimensional space Rn. This is done by
measuring specific points in the state space rather than the entire
set of state variables. Then, the nonlinear term is approximated
by interpolating around selected points, with the number of
measured points matching the reduced-dimensional space r. This
approximation can be expressed as:

WLWfr︸ ︷︷ ︸
r×r

fr(·)︸︷︷︸
r×1

. (9)

The main aim is to project the original nonlinearity f(WRx̃,u,w)
onto Wfr such that f (WRx̃,u,w)≈Wfrfr (·) with WLWfr

being precomputed offline.
To carry out such approximation for the nonlinear term we

start by storing the snapshots of the f (x,u,w) in a matrix (by
performing time-domain simulation similar to as done while
designing Xd and Xa in (5)) given as:

Xf =

 | | | |
f0 f1 ··· ft−1 ft
| | | |

. (10)

Then we take SVD of this snapshot matrix, Xf = WfΣfΛf

with matrix Wf =
[
wf1 ,wf2 ,···,wfn

]
∈Rn×n containing the left

singular vectors, matrix Λf ∈ Rt×n lumping the right singular
vectors, and Σf ∈Rn×n being the diagonal matrix containing the
HSVs. Next, we design Wfr=

[
wf1 ,wf2 ,···,wfr

]
∈Rn×r as the

first r columns of Wf . Finally, we design a binary measurement
matrix PM that selects optimal points in the reduced subspace
Wfr so that nonlinearity can be reconstructed using the selected
points efficiently. To construct such PM we utilize residual-based
greedy technique [7], which essentially puts a measurement (or
a 1 in matrix PM ) where residual/error is maximum (highlighting
measurement point is required). The designed greedy algorithm
proceeds as follows:

The algorithm selects the first measurement location based
on the maximum value in the first mode, wf1 . Selecting the
maximum value as the first measurement point ensures that the
initial point captures a critical aspect of the nonlinear term f(·).
After establishing the first measurement point, the algorithm
iterates to select additional points. In each iteration, it computes
the projection of the current modes onto the next ones as:

P⊤
MWfrc=PMwfj (11)

where c denotes the projection of the current modes contained in
Wfr onto the next mode wfj . Then, the residual is computed as:

d=wfj−Wfrc (12)

and the next measurement point is selected where the value of
d is maximum. By selecting points with the maximum residual,
the algorithm ensures that each new measurement location adds
the most significant new information about the nonlinear term
f(·). The iterative process continues until the number of chosen
measurement points equals the dimension r of the reduced
subspace. After completion of the iterations, the approximation
to the nonlinearity can be expressed as:

fr(·)=Wfr(P
⊤
MWfr)

−1f
(
P⊤
MWRx̃,u,w

)
(13)

Hence, the final ROM can be written as follows:

Erż=Arz+Buru+WLfr(·)+Bwrw (14a)
y=Crz. (14b)

The overall proposed SP-POD-based MOR algorithm is
summarized in Algorithm 1 given in Appendix B. In the
following section, we present the structure-preserving balanced
POD-based (SP-BPOD) MOR technique for the complete NDAE
representation of power systems.

V. STRUCTURE-PRESERVING BPOD MOR

The SP-POD presented in the previous section performs
model reduction based on the energy contents (or modes) in
the time-domain simulation data. While SP-POD is effective in
capturing the dominant behaviors of a system, it primarily focuses
on the energy content without directly considering the impact of
these modes on the system’s controllability or observability. This
limitation can be critical in control applications, as modes with
lower energy levels might still substantially impact how the system
responds to controls and how well it can be monitored or observed
[7]. Therefore, here we also propose a structure-preserving
balanced POD-based MOR approach for the power system NDAE
dynamics. This approach involves reordering the system states
based on a balance criterion that accounts for controllability and
observability. Thus, only modes that are both highly controllable
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and highly observable are retained while the rest are truncated,
making balanced models ideal for control applications.

To design balanced models, we need to compute the controllabil-
ity and observability Gramians. Now, it is well-known that solving
the Lyapunov equations to compute Gramians for a much larger sys-
tem model can be very challenging [10]. Also, in our case, we have
to solve the generalized Lyapunov equation (since the considered
system is DAE and not ODE) which is even much harder to solve
and becomes numerically intractable [20]. Furthermore, using Lya-
punov equations to compute Gramians only considers the system’s
linear part (through the system matrices A, Bu, etc.) and ignores
the accompanying nonlinear function f(·). Thus, the Gramians
may only be valid in the vicinity of the equilibrium point. Given
these challenges, in the literature, the idea of empirical covariance
matrices have been introduced in [21], [22], which approximate
the system Gramians from system impulse responses. It has been
shown that for linear time-invariant systems, empirical covariances
are exactly equal to the usual Gramians derived from system
matrices [21]. In the following sections, we briefly introduce these
covariance matrices and further details can be found in [21], [22].

A. Empirical Controllability Covariance
To state the empirical controllability covariance we first define

the following sets:

T c=
{
T c
1 , ··· ,T c

q ; T
c
l ∈Rnu×nu, T c⊤

l T c
l =I, l=1, ··· ,q

}
Mc={cc1, ··· ,ccs; ccm∈R, ccm>0, m=1, ··· ,s}
Ec=

{
ec1, ··· ,ecnu

; standard unit vectors in Rnu
}

where T c represents the set of excitation direction matrices
and it contains q orthogonal excitation matrices, each of size
nu×nu while Mc denotes the set of excitation magnitudes and it
comprises of s positive real numbers, each representing a different
magnitude of excitation to apply along the directions specified
in T c. Using the above sets, perturbations in the control input for
each time step k can be written as u(k) = cmT c

l eiu(k)+u0(0)
with cm specifying the magnitude, T c

l ei expressing the direction,
and u(k) representing the temporal shape of the perturbation.

The empirical controllability covariance can then be expressed
as follows:

Gc=

nu∑
i=1

q∑
l=1

s∑
m=1

1

qsc2m

K∑
k=0

Ψilm(k)∆t(k) (15)

where K represents the number of points chosen to approximate
the covariance matrix, the notation Ψilm(k) =

(
xilm(k)−

xilm
0

) (
xilm(k)−xilm

0

)⊤
and it quantifies the change in the

system’s state from its initial state. The vector xilm
0 represents the

steady-state of the system while xilm(k) represents the state of
the system at time-step k influenced by an input u(k)

B. Empirical Observability Covariance
Similarly to as done previously, we define the following sets

for empirical observability covariance:

T o=
{
T o
1 , ··· ,T o

q ; T
o
l ∈Rn×n, T o⊤

l T o
l =In, l=1, ··· ,q

}
Mo={co1, ··· ,cos; com∈R, com>0, m=1, ··· ,s}
Eo={eo1, ··· ,eon; standard unit vectors in Rn}

where set T o represents the state excitation directions with total
q orthogonal excitation matrices, set Mo defines the excitation
magnitudes, and Eo defines the state to be excited. Then, we

can define the initial condition perturbation vector as: x(0) =
cmT o

l ei+x0, where cm dictates the perturbation magnitude and
T o
l ei decides the perturbation direction.
The empirical observability covariances is then expressed as

follows:

Go=

q∑
l=1

s∑
m=1

1

qsc2m

K∑
k=0

T o
l Ψ

lm(k)T o⊤
l ∆t(k) (16)

where Ψlm(k) ∈ Rn×n with Ψlm
ij (k) =

(
yilm(k)−

yilm
0

)⊤(
yjlm(k)−yjlm

0

)
representing the change in the system

output from its equilibrium yilm
0 when influenced by change in

the system initial condition given by x(0) as defined above.

C. Empirical Balanced Model Synthesis
Given the empirical covariances, we now have the necessary

tools to transform the NDAE power system (2) to other coordinates
where the system states are ordered and balanced. To do that,
the system needs to be scaled first. This ensures that states
changing by orders of magnitude are appropriately accounted
for in their significance to the system’s dynamics, compared to
states with minimal changes. Therefore, we define the following
scaled/normalized vectors:

xs=S−1
x x, us=S−1

u u, ws=S−1
w w (17)

where Sx=diag(x0), Su=diag(u0), and Sw =diag(w0) with
x0, u0, and w0 representing the steady-state values of these vectors.
Then, the scaled representation of (2) can be written as follows:

Eẋs=S
−1
x ASxxs+S

−1
x BuSuus+S

−1
x f(·)+S−1

x BwSwws (18a)
ys=CSxxs. (18b)

where f(·)=f(xs,us,ws). From now on, for the sake of simplic-
ity, with a little abuse of notation, we consider xs =x, us =u,
and ws = w. Similarly, let A = S−1

x ASx, Bu = S−1
x BuSu,

Bw=S−1
x BwSw, and S−1

x f(xs,us,ws)=f(x,u,w).
The next step is to perform coordinate transformation such as

x̃ =Wx so that the system is balanced. Notice that, for ODE
systems using empirical covariance matrices, computing coordinate
transformation matrix W is straightforward and well-documented,
often involving Cholesky factorization or similar techniques–see
[21], [22]. However, for NDAE systems, the presence of algebraic
equations (which do not exhibit dynamic behavior and represent
static constraints) complicates the application of these techniques.
The NDAE system evolves in a subspace defined by the differential
equations, while algebraic equations restrict this evolution without
contributing to the system’s dynamics [20]. Hence, we propose
a two-step approach to design a balanced model. In the first step,
we perform balancing for the dynamic variables and then in the
second step we perform coordinate transformation for algebraic
variables so that they can also be truncated, the details are given
in the subsequent sections.

D. Balancing Dynamic Variables
To perform balancing for the dynamic variables, we first need to

compute their covariance matrices. With that in mind, to design con-
trollability covariance the NDAE system (2) can be excited by per-
turbations in the control inputs, and state trajectories can be gener-
ated. From these trajectories, a covariance matrix can be computed
using the Eq. (15). This covariance matrix includes the controllabil-
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ity covariance matrix for the states governed by differential equa-
tions. Meaning the designed Gc can be decomposed as follows:

Gc=

[
Gc11 Gc12

Gc21 Gc22

]
(19)

with Gc11 ∈ Rnd×nd , Gc12 ∈ Rnd×na , Gc21 ∈ Rna×nd , and
Gc22 ∈Rna×na . In (19) Gc11 is the symmetric positive-definite
controllability covariance for the dynamic variables and similarly
Gc22 is the covariance matrix for the algebraic variables. Notice
that, Gc22 does not represent controllability in the traditional sense.
Instead, it indicates correlations among algebraic variables and can
be useful for reducing their number (which is discussed in detail
in Sec. V-E).

Similarly, observability covariance matrix can be obtained
by introducing systematic perturbations in the system’s initial
conditions x0 as explained in the previous section. However,
limited information regarding the system’s observability can be
gathered. This is due to the fact that in a regular DAE system,
there are only as many degrees of freedom for selecting consistent
initial conditions as there are dynamic variables [23], [24]. As such,
once each dynamic variable has been perturbed independently,
no additional information regarding the system’s observability
can be obtained by perturbing the algebraic states [23]. In
reality, the perturbation of algebraic variables only produces an
initial condition that locally signifies a linear combination of
the perturbations that were previously applied to the differential
variables. Therefore, by solely perturbing dynamic states, the
covariance matrix Go11 ∈Rnd×nd is determined using Eq. (16).

That being said, using Gc11 and Go11 we can balance the
dynamic variables. The main objective is to find a coordinate
transformation matrix that can make Gc11 and Go11 diagonal
and equal in a new state coordinates that are both observable
and controllable. To find such transformation, a technique
has been proposed in [22] which decouples the system into
controllable/uncontrollable as well as observable/unobservable
components similar to Kalman decomposition. The overall
procedure involves four main steps and are given as follows:

1) The first step is to isolate controllable states by transforming
the controllability covariance matrix Gc11 into a block
diagonal form. This is done by applying a Schur
decomposition to Gc11 using a unitary transformation
matrix T1, resulting in a block diagonal matrix that highlights
the rank (and hence the controllability) of the system. This
transformation is given as follows:

T1Gc11T
⊤
1 =

[
I 0
0 0

]
(20)

where the identity matrix I represents the fully controllable
states.

2) In the second step, the transformation T1 computed in the pre-
vious step is applied to the observability covariance Go11 as:(

T⊤
1

)−1
Go11T

−1
1 =

[
G̃1 G̃2

G̃3 G̃4

]
. (21)

Then a Schur decomposition of the upper block G̃1 is carried
out to isolate observable states as:

L1G̃1L
⊤
1 =

[
Γ1

2 0
0 0

]
(22)

The resulting unitary matrix L1 from this decomposition

forms the basis of the second transformation matrix given as:(
T⊤
2

)−1
=

[
L1 0
0 I

]
(23)

3) In the third step, the combined transformations T1 and T2

are applied to the original observability covariance matrix
Go11 to further isolate observable and controllable states and
to construct the third transformation matrix T3 as follows:(

T⊤
2

)−1(
T⊤
1

)−1
Go11T

−1
1 T−1

2 =

Γ1
2 0 Ĝ2

0 0 0

Ĝ2
⊤ 0 Ĝ4


and T3 is given as:(

T⊤
3

)−1
=

 I 0 0
0 I 0

−Ĝ2
⊤Γ1

−2 0 I

. (24)

4) In the final fourth step, we apply a sequence of
transformations (T1 through T3) to the observability
covariance matrix. Then, we perform Schur decomposition on
the element of the last column and row of the resultant matrix
to construct the final transformation matrix T4 as follows:(

T⊤
3

)−1(
T⊤
2

)−1(
T⊤
1

)−1
Go11T

−1
1 T−1

2 T−1
3

=

Γ1
2 0 0

0 0 0

0 0 G̃4−Ĝ2
⊤Γ1

−2Ĝ2


and

L2(G̃4−Ĝ2
⊤Σ1

−2Ĝ2)L
⊤
2 =

[
Γ3 0
0 0

]
(
T⊤
4

)−1
=

Γ−1/2
1 0 0
0 I 0
0 0 L2

. (25)

Finally, the complete coordinate transformation matrix Wd that
leads to the balanced forms of Gc11 and Go11 can be constructed
by multiplying all the individual transformations (T1 through T4),
as follows:

Wd=T1T2T3T4 (26)

and the corresponding balanced covariance matrices are given as:

WdGc11W
⊤
d =


Γ1 0 0 0
0 I 0 0
0 0 0 0
0 0 0 0

 (27)

(
W−1

d

)⊤
Go11(Wd)

−1=


Γ1 0 0 0
0 0 0 0
0 0 Γ3 0
0 0 0 0

. (28)

The final transformation matrix Wd decomposes the dynamic
variables into four separate categories, states that are (1) both
controllable and observable, (2) controllable but not observable,
(3) observable but not controllable, and (4) neither observable nor
controllable. In particular, the diagonal matrix Γ1 (with diagonal
entries representing the HSVs) signifies the states that are both
controllable and observable, the identity matrix I depicts the states
that are only controllable, the diagonal matrix Γ3 denotes the states
that are observable but not controllable, while zeros represent
the states that are neither controllable nor observable. The above-
balanced form facilitates system simplification by eliminating
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states that contribute little to the system’s dynamic behavior.
E. Coordinate Transformation of Algebraic Variables

In the above section we performed coordinate transformation for
dynamic states such that they are balanced and hierarchically or-
dered and thus suitable for reduction. Here, we perform transforma-
tion for the algebraic variables so that they can also be ordered and
later on truncated. This can simply be done by taking the SVD of
covariance matrix Gc22 (which is computed in Eq. 19) as follows:

Gc22 =WgcΣgcΛgc (29)

where Σgc is a diagonal matrix and contains the HSVs in
descending order while matrices Λgc and Wgc contain the right
and left singular vectors, respectively. The columns of Wgc are
ordered hierarchically from most dominant to least and are referred
to as the modes of Gc22 . Hence, the coordinate transformation
matrix Wa for the algebraic variables can be set to be equal to
Wgc, i.e. Wa=Wgc.

The final non-singular coordinate transformation matrix W
and the truncation matrix T for the SP-BPOD can be expressed
similarly as in (6) and (7). While the dimensions of identity
matrices Idr and Iar here can be designed by examining
the magnitude of HSVs in Γ1 and Σgc, respectively. The
corresponding matrices WR and WL for the SP-BPOD can then
constructed as WL=TW and WR=W−1

L .
Now as discussed in the previous section, mapping the

nonlinearity using WR and WL as WLf (WRx̃,w,u) still
depends on the dimension of full state vector x and thus can be
computationally expensive. Then again, one can use the DEIM-
based hyper-reduction approach to measure specific points in the
state-space and then efficiently interpolate the nonlinearity around
the selected points (as done in Eq. 9 of SP-POD-based MOR
technique). Having said that, the overall proposed SP-BPOD-based
MOR algorithm for the complete NDAE power system model
is summarized in Algorithm 2 presented in Appendix B. It is
worth mentioning here that in both the proposed SP-POD and
SP-BPOD model reduction techniques, the final reduced order
model is guaranteed to be an NDAE. In both proposed techniques,
the number of dynamic states in the ROM is determined by the
dimensions of Idr; similarly, the number of algebraic variables is
controlled by the dimension of user-defined identity matrix Iar.

VI. CASE STUDIES

To assess the effectiveness of the proposed methods we perform
thorough simulation studies on various power system models,
namely, the modified IEEE 39-bus and the 2000-bus Texas
networks [25]. The details about these test systems are given in
the below sections and Appendix A. All the numerical simulations
are performed on MATLAB R2023a running on a personal laptop
with an Intel-i9 processor. The NDAE power system models are
simulated using MATLAB index-1 DAEs solver ode15s. The
system volt-ampere base is chosen to be Sb = 100MVA while
the frequency base is selected as wb =120πrad/s. To carry out
the time-domain simulations the system’s initial conditions are
determined using power flow studies carried out in MATPOWER.

To implement the proposed SP-POD-based MOR technique, the
snapshot data matrices Xd, Xd, and Xf need to be computed.
This is done by carrying out time domain simulations under step
disturbance in overall system load demand as follows. Initially,
the system operates under steady-state conditions, meaning load

demand is exactly equal to generation and thus there are no
transients. Then, right at t>0 an abrupt disturbance in load demand
is applied to the system as: P e

d+Qe
d=(I+∆d)(P

0
d +Q0

d), where
P 0
d and Q0

d represent the initial active/reactive load demand and
P e
d and Qe

d are their respective values after the disturbances. The
parameter ∆d denotes the severity of the disturbances and we
selected it as 0.001. The overall simulation time period is set to be
20sec and the system transients dynamic and algebraic states data
is saved in matrices Xd, Xd, and Xf . These snapshot data is then
used in SP-POD Algorithm 1 to design the corresponding ROM.

For the SP-BPOD-based MOR algorithm the empirical
covariances matrices Gc and Go11 are computed for the scaled
system (18) over the time period [0,5s] with ∆t(k) set to be
0.01s. To design the covariances matrices using Eqs. (15) and (16)
systematic perturbations in the control inputs u or initial conditions
x0 are added right at t>0 by defining the following sets:

T c={Inu×nu
,−Inu×nu

}, T o={In×n,−In×n}. (30)

The sets T c and T o represent the decision to apply both positive
and negative unit perturbations to each input (for controllability
covariance) and state (for observability covariance), respectively.
This choice ensures that the system’s response to both increases
and decreases in inputs or initial states is evaluated, providing a
comprehensive view of its dynamic behavior. Similarly, the sets
Mc and Mo are chosen to be:

Mc=αuM0, Mo=αxM0 (31)

where M0={0.25,0.5,0.75,1.0} is a linearly scaled set and offers
a structured approach to varying the magnitude of perturbations.
The set M0 ensures that the system’s response is observed under
perturbations ranging from subtle to substantial [21], [26]. In
(31) an extra user-defined scaling constants αu and αx are also
included to make the perturbation magnitude in the control input
and states reasonable and to make sure the ode15s solver is
able to simulate the system under those conditions. Notice that
if the perturbation magnitude is too large, then the power system
will lose synchronism, and the time-domain simulation will not
be performed for those transient conditions. Thus, αu and αx

need to be adjusted to make sure the system runs smoothly with
ode15s solver. Given that, here we select the value for both of
these constants to be αu=αx=0.05, which works well in our case.

A. Case Study on IEEE 39-bus Systems
Here, we perform MOR on a modified IEEE 39-bus systems.

The 39-bus system consists of 9 conventional power plants (steam
and hydro-based), one solar farm at Bus 36, and a motor-based
load at Bus 14. The one-line diagram of this system is given
in Appendix A. The conventional power plants are modeled via
detailed 9th-order dynamics modeling; generator swing equations,
turbine and governor models, and excitation system dynamics. The
solar power plant is acting in grid-forming mode and is modeled via
12th-order dynamical model. Further details about the dynamics
of the considered power system model are given in Appendix A.
The original full 39-bus system consists of 97 dynamic states and
120 algebraic variables, i.e nd=97, na=120, and n=217.

To design appropriate ROM for the considered test system, first
we observe the HSVs contained in Σd, Σa for SP-POD and Γ1,
Σgc for SP-BPOD. The results for Σd and Σa are shown in Fig. 1.
From these figures we can see that the HSVs of Σd decay quickly
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Figure 1. HSVs and their cumulative sum contained in Σd (above) while below is
for Σa; 39-bus system. The first rd=7 HSVs in Σd contain 99% of the cumulative
sum, similarly for Σa the first ra=3 HSVs contain 97% of the cumulative sum.
Thus, the size of ROM is selected to be r=10.
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Figure 2. Comparison of FOM and ROM for 39-bus system; rotor angle of Gen.
at Bus 35 (top-left), frequency of Gen. at Bus 35 (top-right), relative angle of solar
plant (bottom left), and overall error norm (bottom right).
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Figure 3. Comparison of algebraic variables between FOM and ROM for the 39-bus
system; Bus 5 real and imaginary current (above), and Bus 5 real and imaginary
voltage (below).

to zero. Thus, 99% system energy for the dynamic states in the
transformed coordinates can be captured by choosing only the first
rd=7 states and truncating the rest of them. Hence the dimension
of identity matrix Idr is chosen to be Idr∈R7×7. Similarly, from
Fig.1 by looking at the HSVs contained in Σa we can see that
the number of algebraic variables in the transformed coordinates
can be truncated to 3 (as again 97% of system input-output energy
can be captured using first three states) by setting Iar ∈ R3×3.
This truncation of both dynamic and algebraic variables in the
transformed coordinates effectively reduced the dimension of the
system by retaining much of the system input-output behavior while
truncating those with little to no contribution to system dynamics.

Similar observations have been carried out for the SP-BPOD-
based MOR technique and the dimensions of ROM have been
determined. After determining suitable dimensions for reduced
models, the corresponding ROMs are constructed using the
proposed SP-POD and SP-BPOD-based techniques as given in
Algorithms 1 and 2. A comparison with BT-based MOR has
also been presented as proposed in [10], [27] to showcase the
effectiveness of the proposed methodologies. Notice that BT-MOR
is applied to LODE systems as it cannot handle NDAE dynamics.

To access the performance of the proposed MOR techniques
time-domain simulations are carried out under transient conditions.
The dynamic response of the power system is generated by adding
step disturbance in load demand right at the start of the simulation.
The disturbance in load demand has been added as discussed in
the previous section. Both the FOM and ROMs are simulated
under these transient conditions and system responses are recorded.
To compare the performance between FOM and ROMs the data
generated from ROMs are transformed backed and original state
vectors are recovered. The results are given in Fig. 2 and 3. For
brevity, a couple of dynamic and algebraic variables are shown,
we can see the recovered dynamic states (rotor angle and speed
of synchronous generator at Bus 35 and relative angle of solar
plant) are close to the original system responses. Similarly, for the
algebraic variables shown in Fig. 3 we can see that the original and
recovered states are close and accurate to each other. To further
evaluate the performance of the proposed MOR techniques, we
also compute the root mean square error (RMSE) between the
original and the recovered states. Accordingly, the RMSE value for
SP-POD is determined to be 0.038, while for the SP-BOPD-based
ROM, it is 0.0019. We can see that RMSE values are small and
thus the ROMs can accurately approximate the full-order system
dynamics. These results are also corroborated by Fig. 2 where the
error norm is plotted, we can see that the error is close to zero.

Moreover, to assess the simulation accuracy between the FOM
and ROMs separately for state variables of conventional power
plants, solar plant, and algebraic states, we define the following
index:

εs=

√√√√∑N
j=1

∑tf
t=1

(
xrj,t−xFOM

j,t

)2
Ntf

(32)

where tf is the overall time period and N is the number of state
variables whose accuracy needs to be determined. These results
are shown in Tab. I, we can see that the proposed methods can
accurately approximate both the dynamic and algebraic variables
of the full-order system dynamics.
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B. Case Study on 2000-bus Texas System
In this section, we discuss the performance of the proposed

MOR techniques on a much larger power system model, namely,
the 2000-bus Texas system. The static network data (topology and
parameters) on this system is taken from [25] while the dynamic
data (the generator parameters) is generated synthetically. The
overall system consists of 282 synchronous machines modeled
via a detailed 11th-order dynamical model. The dynamics consist
of 6th-order generator swing equations, excitation system models,
and turbine/governor dynamics. The original full-order system
consists of 3102 dynamic variables and 564 algebraic variables,
i.e., nd=3102, na=564, and n=3666.

Now, similarly to as done in the previous section, to design
ROM, we first determine the appropriate size of the dynamic and
algebraic variables in the reduced order model NDAE. For the
SP-POD this can be done by observing the HSVs in Σd and Σa

as presented in Fig. 4. We see that the dynamic variables in ROM
for the SP-POD-based technique can be set to be rd=10 (as this
captures almost 99.99% cumulative sum), similarly the number
of algebraic variables in the ROM can chosen to be ra=30. This
gives us the overall dimension for the SP-POD-based ROM as
r=40. Similarly, for the SP-BPOD by observing HSVs in Γ1 and
Σgc we get rd=8, ra=25, and r=33.

We want to point out here that while applying SP-BPOD
for this case study, the computation of observability covariance
G011 can become computationally expensive. This is because
to compute G011 as discussed earlier, we have to perturb each
dynamic state independently, and thus, we need to perform nd

number of simulation studies. Which can become computationally
expensive for the given Texas system with nd=3102. However,
this can easily be avoided, as discussed in [28]. The idea is
only to perturb the dominant POD modes instead of all the
dynamic states to approximate G011 . Hence, G011 for this case
study has been designed as follows: First, the state vector x is
coordinately transformed using SP-POD as x(t)≈WRz(t) and
then the dynamic states in z (which are only 10) are systematically
perturbed to approximate the observability covariance.

Having said that, to assess the performance of the proposed
technique, we again do time-domain simulations under transient
conditions. To generate system dynamic response here, we create
a generator side disturbance by adding a 10% reduction in the
mechanical power output of one of the synchronous generators
at t=1s that last for 1s. Both the FOM and ROMs are simulated
under this transient condition and system responses are recorded.
These results are shown in Fig. 5. We can see that the response
of both dynamic and algebraic variables from the ROMs closely
matches that of the FOM. This can also be corroborated from the
plot of error norm (presented in Fig. 5 (bottom right)) and from
the RMSE value which is determined to be 0.0037 for SP-POD
and 0.0027. We can see that the error norm and the RMSE values
are small, showing that the response from ROMs is accurate.

We also present the simulation accuracy for the dynamic
and algebraic variables separately for this case study in Tab. II.
Again, we can verify that the proposed MOR techniques can
simultaneously reduce both dynamic and algebraic variables (from
nd = 3102, na = 564, and n = 3666 to rd = 10, ra = 30, and
r=40 in case of SP-POD and to rd=8, ra=25, and r=33 for
SP-BPOD) while maintaining very good accuracy. A comparison

Table I
COMPARISON OF SIMULATION ACCURACY OF THE PROPOSED METHODS FOR

VARIOUS STATE VARIABLES, 39-BUS SYSTEM. THE NOTATION rd REPRESENTS
DYNAMIC STATES IN THE ROM, SIMILARLY ra ARE THE ALGEBRAIC

VARIABLES IN THE ROM, WHILE r DENOTES THE OVERALL DIMENSION OF
ROM NDAE.

Variables εs=

√∑N
j=1

∑tf
t=1

(
xr
j,t−xFOM

j,t

)2

Ntf

SP-POD
rd=7, ra=3

r=10

SP-BPOD
rd=8, ra=3,

r=11

BT-LODE [10]
rd=12

Conventional
Power plant States 1.62×10−2 2.15×10−3 1.8813

Solar Farm
States 1.01×10−3 3.12×10−4 1.9412

Algebric
States 4.01×10−3 1.58×10−4 Not

Applicable
Table II

COMPARISON OF SIMULATION ACCURACY OF THE PROPOSED METHODS FOR
VARIOUS STATE VARIABLES, 2000-BUS TEXAS SYSTEM.

Variables εs=

√∑N
j=1

∑tf
t=1

(
xr
j,t−xFOM

j,t

)2

Ntf

SP-POD
rd=10, ra=30

r=40

SP-BPOD
rd=8, ra=25

r=33

BT-LODE [10]
rd=54

Conventional
Power Plant States 2.13×10−4 5.91×10−5 4.0828

Algebric
States 7.91×10−4 0.87×10−5 Not

Applicable
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Figure 4. HSVs and their cumulative sum contained in Σd (above) while below
is for Σa, 2000-bus Texas system. The first rd=10 HSVs in Σd contain 99.99%
of the cumulative sum, similarly for Σa the first ra =30 HSVs contain 99.99%
of the cumulative sum. Thus, the size of ROM is selected to be r=40.

with state-of-the-art BT-based MOR has also been provided in Tab.
II. Notice that to apply BT the system has first been linearized
and then converted to an equivalent ODE as in [10]. From Tab.
II we can see that the proposed MOR techniques are superior
in terms of accuracy and the size of corresponding ROM as
compared to BT-LODE. Notice that the reason BT-LODE is
providing poor results is because it is designed based on linearized
system dynamics, while the proposed techniques consider the
complete nonlinear system. Also, BT-LODE cannot reduce the
algebraic variables as it is applicable to ODE dynamics only, while
the proposed MOR techniques can simultaneously reduce both
dynamic and algebraic variables as presented in Tab. II.

VII. CONCLUDING REMARKS

In this paper, we propose two MOR approaches, namely the
SP-POD and SP-BPOD, to simultaneously reduce both dynamic
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Figure 5. Comparison of FOM and ROM for 2000-bus Texas system; Generator 10
rotor angle (top-left), frequency (top-right), current output (bottom left), and overall
error norm (bottom right).

and algebraic variables of NDAE power system models. The
SP-POD offers reducing the system order based on the POD
modes in the transient simulation data, while in contrast, the
SP-BPOD offers designing ROM via balanced-realization. Because
of the diagonal structure of the designed coordinate transformation
matrix, the corresponding ROMs from both the proposed methods
are guaranteed to be NDAE similar to the original power system
model. Thus, the proposed techniques preserve the essential
differential-algebraic structure of power system models while
allowing a smooth transition from reduced order to the full order
dynamic and algebraic state variables.

To verify the accuracy of the proposed techniques, simulations
on modified IEEE 39-bus and 2000-bus Texas systems are carried
out. The results show that the proposed techniques can significantly
reduce the size of NDAE power system models while providing
state trajectories close to those directly computed from running
the full power system model. Future work will focus on using
the ROMs to design scalable robust state-feedback controllers
and state estimation algorithms, making control algorithms more
amenable to large-scale power systems.
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APPENDIX A
DETAILS OF THE POWER SYSTEM DYNAMICS

Borrowing from [2], here we present comprehensive details
about the dynamics of power system model used in this study as
follows:

A. Dynamics of Conventional Power Plants

We model the conventional power plants via 9th-order
dynamical model. The overall dynamics consist of synchronous
machines swing equations, steam/hydro turbine and governor
differential equations, and IEEE-type DC1 excitation system
model, presented as follows [2], [29]:
• Swing equations:

δ̇gi =ωgi−ω0

ω̇gi =
1

2Hi
(TMi−Tei) with Tei =Ediidi+Eqiiqi

Ėqi
=− 1

tqoi
(Eqi

−(x′qi
−xqi

)idi
)

Ėdi
=− 1

tdoi
(Edi

+(x′di
−xdi

)iqi
−Efdi

).

(33a)

• Turbine and governor dynamics:

ṪMi
=

{ − 1
tchi

(TMi−Pvi) if thermal

− 2
twi

(TMi
−Pvi+tchiṖvi) if hydro

Ṗvi =− 1

tvi
(Pvi−P∗

vi+
ωi−1

Rdi
).

(33b)

• Excitation system dynamics:

Ėfdi =
−1

tfdi
(kei+SeiEfdi−vai) with Sei=aie

biEfdi

ṙfi =− 1

tfi
(rfi−

kfi
tfi

Efdi
)

v̇ai=− 1

tai
(vai−kaivei).

(33c)

In the above model, i ∈ G, ωgi represents generator speed, δgi
denotes generator rotor angle, ω0 is synchronous speed of the gen-
erator, Edi , Eqi are the generator transient voltages along dq-axis,
x′qi

,x′di
represents synchronous generator transient reactance while

xqi
,xdi

are the reactances along dq-axis, respectively, tdoi , tqoi de-
notes the dq-axis open circuit time constants, iqi

, idi
represents syn-

chronous machine currents along dq-axis, TMi , Tei are the mechan-
ical torque and the electrical torque of generator, respectively, Pvi is
hydro/steam turbine valve position, P∗

vi is the operator set point for
the turbine valve position, vai denotes amplifier voltage, Efdi

repre-
sents synchronous machine field voltage, rfi denotes the stabilizer
output, Rdi is the droop constant for the governor (Hz/pu), Hi rep-
resents inertia constant (pu×sec) of the generator, and kai, kei, kfi,
are the amplifier, exciter, and stabilizer constant gains, respectively.

Furthermore, in model (33), twi, tchi, tvi, tfi, tai, and tfdi are
the time constants for generator field voltage, hydro/steam turbine
valve position, amplifier, and stabilizer, respectively while the
notation Sei denotes saturation function of synchronous generator
field voltage with scalar constants ai, bi as given in [29]. Similarly,
vei in the exciter dynamics (33c) is the voltage control error

given as: vei = V ∗
i −Vi+rf −

kfi
tf

Efdi
with Vi representing the

synchronous machine terminal voltage and V ∗
i denoting grid

operator voltage set point.

The input and overall state vectors for the conventional power
plant models can then be expressed as follows:

uG=
[
P ∗⊤
v V ∗⊤]⊤∈R2G (34a)

xG=
[
ω⊤
g δ⊤g E⊤

q E⊤
d E⊤

fd T⊤
M P⊤

v r⊤f v⊤
a

]⊤∈R9G. (34b)

B. Dynamics of Grid-Forming Solar Power Plants
We model the solar plant dynamics via 12th-order dynamical

model as given in [30], [31]. The overall model describes a solar
power plant acting in grid-forming (GFM) mode and the dynamics
include; DC side differential equation (dynamic equations
describing PV array DC link models), AC side dynamics (DC/AC
inverter and LCL filter differential equations), and current/voltage
regulators dynamical models presented as follows with i∈ R:
• DC side dynamics:

Ėdci =
1

BCi

(
Ppvi

−Pci

)
. (35a)

• AC side dynamics:

i̇dfi =
ωb

Xfi

(
−rfiidfi+ωciXfiiqfi+vdfi−vdoi

)
i̇qfi =

ωb

Xfi

(
−rfiiqfi+ωciXfiidfi+vqfi−vqoi

)
v̇dci =

ωb

Bci

(
ωciBcivqci+idfi−idgi

)
v̇qci =

ωb

Bci

(
ωciBcivdci+iqfi−iqgi

)
δ̇ci =ωb(ωci−ω0) with ωci =1−kpi(P̃ei−P∗

ei)

˙̃Pei =
1

τsi
(−P̃ei+Pei)

˙̃Qei =
1

τsi
(−Q̃ei+Qei).

(35b)

• Voltage regulator dynamics:

żdoi =
κpvi

τvi
(v∗doi−vdoi) with v∗doi =V ∗

i +kdiiqgi

żqoi =
κpvi

τvi
(v∗qoi−vqoi) with v∗qoi =0.

(35c)

• Current regulator dynamics:

żdfi =
κpi

τii
(i∗dfi−idfi)

i∗dfi =κpvi
(v∗doi−vdoi+zdoi+idgi+idci)

żqfi =
κpi

τii
(i∗qfi−iqfi)

i∗qfi =κpvi
(v∗qoi−vqoi+zqoi+iqgi+iqci).

(35d)

In Eq. (35a), BCi
denotes the capacitance of the DC link capacitor

while Edci represents the energy stored in it, Ppvi
denotes the DC

power supplied by the PV array while Pci represents the power
extracted by the solar inverter.

Similarly, in AC side dynamics (35b), Xfi , rfi denotes the reac-
tance and resistance of the AC side LCL filter, idfi , iqfi represents
the current flowing through the LCL filter along dq-axis, Bci , rci
denotes the capacitance and resistance of the LCL filter capacitor,
idci , iqci , vdci , vqci represents the current and voltages of the LCL
filter capacitor along dq-axis, respectively, idgi , iqgi are the dq-axis
current output to the main grid, ωb represents the base speed while
ωci denotes the angular speed of the inverter, Pei , Qei are the
real and reactive power output of the solar plant to the main grid,
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P̃ei , Q̃ei are the phasor representations of Pei , Qei after passing
through low pass filter (which are later used in the droop control of
the GFM inverter), τsi represents the time constant of the low pass
filter, kpi denotes the droop constant of the solar inverter, and finally
P∗
ei represents the grid operator active power set-point command.
Furthermore, in voltage and current regulator dynamics given in

(35c) and (35d), V ∗
i represents the grid operator voltage set point

command, kqi denotes the voltage droop constant, and κpi
, κpvi

,
τii , τvi are the constants gains and corresponding time constants
of current and voltage regulators of the solar plants, respectively.
Note that, current and voltage regulation in the presented GFM
inverter is simply achieved by a proportional-integral (PI) type
controller with zdf , zqf , zqo, zdo representing the states of integral
compensators along dq-axis, respectively, as detailed in [30], [31].

Therefore, the overall input and state vector for the solar power
plant model used in this study can be expressed as:

uR=
[
P ∗⊤ V ∗⊤]⊤∈R2R

xR=
[
δ⊤c E⊤

dc P⊤
e Q⊤

e i⊤dqf v
⊤
dqc z⊤

dqo z⊤
dqf

]⊤∈R12R.

C. Power System Algebraic Equations and Loads Dynamics

Here, we present the algebraic constraints and the load models
of the considered test power system. We consider various types of
loads dynamics i∈ L such as constant impedance, constant power,
and motor type loads detailed as follows [2].

The differential equations for the motor-based loads are given as:

ω̇Mi
=

1

2HMi

(Tei−TMi
) (36)

where HMi denotes the inertia constant of the motor, ωMi repre-
sents the speed of the motor-based load, and Tei , TMi

denotes the
electromagnetic and mechanical torque of the motor, respectively.

Constant impedance and constant power types loads satisfy the
following relationships [2]:

IziZi+Vzi =0 (37a)
Ppi+Qpi+conj(Ipi)Vpi =0 (37b)

where conj denotes complex conjugate operator, and Ppi , Qpi ,
Vpi , Ipi are the real power, reactive power, voltage, and current
phasors of buses connected to constant power loads, respectively.
Similarly, Izi , Vzi are the current and voltage phasors of the buses
connected to the constant impedance loads Zi.

The algebraic constraints are the current balance equations and
are given as follows:IR

IG

IL


︸ ︷︷ ︸
I(t)

−

YRG YRR YRL

YGG YGR YGL

YLG YLR YLL


︸ ︷︷ ︸

Y

V R

V G

V L


︸ ︷︷ ︸
V (t)

=0 (38)

where I(t) denotes the net injected current, V (t) represents bus
voltages, and Y is the power network admittance matrix. Moreover,
IG={IRei}i∈G + j{IImi

}i∈G , V G = {VRei}i∈G + j{VImi
}i∈G

represents current and voltage phasors at the terminal of buses
connected with conventional power plants. Similarly, IR, IL, and
V R, V L are the current and voltage phasors of solar plants and
load buses, respectively.

Having said that, the overall state vectors for loads and system
algebraic constraints can be written as follows:

xL=
[
ωm

]
∈RLk (39a)

xa=
[
I⊤
Re I⊤

Im V ⊤
Re V ⊤

Im

]⊤∈R4N . (39b)

APPENDIX B
PROPOSED MOR ALGORITHMS

The proposed SP-POD and SP-BPOD-based MOR algorithms
are detailed in this section. Further explanations about creating
the snapshot matrices (Xd, Xa, and Xf ) and covariance matrices
(Gc11 and Go11) are given in Sec. VI.

Algorithm 1: SP-POD for power system NDAE models

1 Input: NDAE (2) parameters A, Bu, Bw, E, f(·), and x0

2 Output: ROM parameters Er, Ar, Br, Bwr, and fr(·)
3 Create snapshot matrices Xd (5a), Xa (5b), and Xf (10)
4 if n<<t then
5 Perform SVD as:
6 Xd=WdΣdΛd, Xa=WaΣaΛa

7 else
8 Perform eigenvalue decomposition:
9 X⊤

d XdVd=Vdλd, X⊤
a XaVa=Vaλa

10 Then design Wd and Wa as folows:

11 Wd=XdVdλ
−1
2

d , Wa=XaVaλ
−1
2

a

12 Construct W =blkdiag(Wd,Wa) as in (6)
13 Design Td, Ta (7) by examining HSVs in Σd and Σa

14 Construct T =blkdiag(Td,Ta) as in (7)
15 Design WR=TW and WL=W−1

R

16 SVD Xf (10) as: Xf =WfΣfΛf

17 Start greedy algorithm to design PM

18 Construct rank-r approximating basis
Wfr=

[
wf1 ,wf2 ,···,wfr

]
19 Choose the first index: [ρ, i1] =max(wf1)
20 Construct first measurement matrix

PM1
=ei1,Wfr=[wf1]

21 for j=2:r do
22 calculate c using, P⊤

MWfrc=PMwfj

23 compute residual, d=wfj−Wfrc
24 update PM and Wfr as follows:
25 [ρ,ij]=max(d)
26 Wfr=[Wfr,wfj ],PM =[PM ,eij ]

27 Calculate fr(·) (13) and Er, Ar, Bur, Bwr using (4)
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Algorithm 2: SP-BPOD for power system NDAE models

1 Input: NDAE (18) parameters A, Bu, Bw, E, f(·), and x0

2 Output: ROM parameters Ar, Bur, Bwr, Er, and fr(·)
3 Compute matrices Gc11 and Go11 using (15) and (16)
4 Compute T1 (20), T2 (23), T3 (24), and T4 (25)
5 Construct Wd=T1T2T3T4 as in (26)
6 Perform SVD of Gc22 as: Gc22 =WgcΣgcΛgc (29)
7 Select Wa=Wgc

8 Compute W =blkdiag(Wd,Wa) as in (6)
9 Design Ta, Td by examining HSVs in Σgc (29) and Γ1 (27)

10 Design matrix T =blkdiag(Td,Ta) as in (7)
11 Design WL=WT and WR=W−1

L

12 Construct Xf (10) and SVD it as: Xf =WfΣfΛf

13 Start greedy algorithm to design PM

14 Construct rank-r approximating basis
Wfr=

[
wf1 ,wf2 ,···,wfr

]
15 Choose the first index: [ρ, i1]=max(wf1)
16 Initialize measurement matrix

PM1
=ei1,Wfr=[wf1]

17 for j=2:r do
18 calculate c using, P⊤

MWfrc=PMwfj

19 compute residual, d=wfj−Wfrc
20 update PM and Wfr as follows:
21 [ρ,ij]=max(d)
22 Wfr=[Wfr,wfj ],PM =[PM ,eij ]

23 Calculate fr(·) (13) and Er, Ar, Bur, Bwr using (4)

Figure 6. Diagram of the IEEE 39-bus system with solar power plant at Buses 36
and a motor load at Bus 14 while the symbol G represents buses with synchronous
generators.
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