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Abstract— This paper presents a novel accelerated dis-
tributed algorithm for unconstrained consensus optimiza-
tion over static undirected networks. The proposed algo-
rithm combines the benefits of acceleration from momen-
tum, the robustness of the alternating direction method of
multipliers, and the computational efficiency of gradient
tracking to surpass existing state-of-the-art methods in
convergence speed, while preserving their computational
and communication cost. First, we prove that, by applying
momentum on the average dynamic consensus protocol
over the estimates and gradient, we can study the algorithm
as an interconnection of two singularly perturbed systems:
the outer system connects the consensus variables and
the optimization variables, and the inner system connects
the estimates of the optimum and the auxiliary optimiza-
tion variables. Next, we prove that, by adding momentum
to the auxiliary dynamics, our algorithm always achieves
faster convergence than the achievable linear convergence
rate for the non-accelerated alternating direction method of
multipliers gradient tracking algorithm case. Through simu-
lations, we numerically show that our accelerated algorithm
surpasses the existing accelerated and non-accelerated
distributed consensus first-order optimization protocols in
convergence speed.

Index Terms— Optimization algorithms, distributed con-
trol, cooperative control

I. INTRODUCTION

D ISTRIBUTED optimization refers to the problem of
finding the global optimum of an optimization problem

where the cost function, the constraints or the available infor-
mation is distributed over a network [1]. Of particular interest
is the case of unconstrained consensus optimization [2], where
the global cost function is the sum of local cost functions.
Practical instances of such a setting are federated learning
[3], networked games [4] or multi-robot control [5]. In all
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these applications, it is of key importance to reconstruct the
global optimum as fast as possible to reduce the number of
gradient computations, the communication efforts and adapt to
evolving environments. To cope with this, we propose a novel
accelerated distributed optimization algorithm that exploits
momentum to outperform existing first order approaches in
convergence speed, while leveraging the robustness of the
alternating direction method of multipliers (ADMM) and the
computational simplicity of gradient tracking (GT).

The evolution of distributed optimization algorithms can be
divided in three stages. The first approaches departed from
subgradient [6], gradient [7] and proximal methods [8] to
derive distributed versions that achieve convergence to the
optimum if and only if the step size diminishes with time.
This property poses a fundamental trade-off between speed and
accuracy because fixed step sizes lead to convergence within
a given distance from the optimum.

To overcome the speed-accuracy trade-off, several works
capitalized from different points of view the properties of
dynamic average consensus [9], [10] and splitting methods
to develop GT [11]–[14] and ADMM or primal/dual methods
[15]–[17] for distributed optimization. In both cases, linear
convergence is achieved for constant step sizes; however,
these approaches suffer from their respective caveats. GT is
simple to compute but is inherently non-robust against non-
ideal affections such as initialization errors, gradient noise or
communication disturbances [18]. ADMM is robust against
those undesirable effects but, as a proximal method, it has
a non-negligible computational cost at each iteration [16]. In
both cases, due to the importance of convergence speed, dif-
ferent works have exploited acceleration methods to improve
convergence rate such as momentum [19], [20], Nesterov
acceleration [21], Anderson acceleration and adaptive precon-
ditioning for proximal-based optimization such as ADMM and
Douglas-Rachford Splitting [22], [23] or smooth/non-smooth
regularizers [24]. Many of the aforementioned methods work
for time-varying and/or directed graphs, whereas in this paper
we focus on the static undirected case.

Recently, a distributed optimization protocol that combines
ADMM and GT [25], [26] was proposed as an alternative
to combine the benefits of both approaches. The key idea
is that GT can be reformulated in ADMM form, where
the ADMM cost function is quadratic in the optimization
variables. Therefore, it is possible to obtain a closed analytical
solution that is cheap to compute and robust. Nevertheless,
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despite proving linear convergence for strongly convex cost
functions, the algorithm needs time-scale decoupling between
the optimum estimate and auxiliary dynamics, limiting the
achievable convergence speed.

To overcome such limitation, our main contribution (Sec-
tion III) is a novel accelerated distributed optimization method
for static undirected networks based on ADMM and GT
which exploits momentum (for details about the concept of
momentum, see [27]). Momentum allows to accelerate the
convergence of tracking average consensus variables (e.g.,
[10]) over the estimates and gradients, and speed up the
convergence speed of the auxiliary variables’ dynamics. As a
consequence, we can study the convergence properties of our
protocol and show that it always achieves linear convergence
to the global optimum. More importantly, we also prove that,
by adding momentum, acceleration is guaranteed compared
to the same algorithm without momentum. We empirically
evaluate our proposed algorithm (Section IV) against existing
state-of-the-art algorithms, showing that ours surpasses all
of them in convergence speed, using the same computation-
communication resources while increasing the memory bur-
den.

II. PRELIMINARIES

A. Problem Formulation
A network of N > 0 nodes1 cooperates to find the global

optimum x∗ ∈ Rn of the consensus optimization problem

x∗ = arg min
x∈Rn

N∑
i=1

fi(x), (1)

where x ∈ Rn is the n−dimensional decision variable. Each
node i ∈ V = {1, . . . ,N} only has access to its local objective
function fi(•) and the local estimate of global optimum xt

i,
with t ∈ N denoting the discrete time steps. Problem (1) is
reformulated in distributed form by including the consensus
constraint as follows

x∗ = arg min
xi∈Rn

N∑
i=1

fi(xi) s.t. xi = xj ∀i, j ∈ V. (2)

We assume that fi(•) is c-strongly convex and the gradients
∇fi(x) are L-Lipschitz continuous ∀i ∈ V . This assumption
guarantees that x∗ is unique.

The network of nodes is described by an undirected con-
nected graph G = {V, E}, where E ⊆ V×V is the set of edges
of the graph, such that (i, j) ∈ E means that nodes i and j can
communicate with each other. The set of neighbors of node i
is Ni = {j|(i, j) ∈ E}. Note that i /∈ Ni. The degree of node
i is di = car(Ni) and d =

∑N
i=1 di.

The goal of this work is to develop a distributed algorithm
such that each local estimate xt

i linearly converges to the
global optimum x∗, respecting the topology structure of G.

1Notation. Let N and R be the natural and real number sets. We use
car(•) to denote the cardinality of a set. We define as Ip, 0p×k , 1p×k

the identity matrix of dimension p, the p× k matrix of zeros and the p× k
matrix of ones respectively. Besides, 1N,p = 1N ⊗ Ip where ⊗ denotes the
Kronecker product. Let σi(•) be the i-th eigenvalue of a matrix and det(•)
its determinant. Let || • || be the L2-norm. We denote by diag({Ei}Ni=1) the
block diagonal matrix whose i−th block element matrix is Ei.

B. Singularly Perturbed Systems

Some of the mathematical derivations exposed in this work
are based on singularly perturbed systems theory [28]. Singu-
larly perturbed systems are dynamical systems composed by
two interconnected dynamics, each of them evolving at dif-
ferent time-scales. Typically, the slow dynamics corresponds
to the desired states to be controlled (e.g., the estimates xt

i)
while the fast dynamics corresponds to auxiliary variables. To
ensure stability, the speed of the slow system is constrained
by the speed of the fast dynamics. For clarity, we reproduce a
theorem that establishes that, for a sufficiently slow dynamics,
the slow system (3a) is decoupled from the fast system (3b)
and they are both globally exponentially stable. We will use
this fact to prove convergence properties of our algorithm.

Theorem 1 (Theorem II.3, [26]): Let

pt+1 =pt + γf(pt,qt, t) (3a)

qt+1 =g(qt,pt, t), (3b)

with p ∈ Rn, q ∈ Rm, γ > 0 and f(•), g(•) Lipschitz
continuous uniformly over t. Let assume that there exists a
function qeq(p) that is Lipschitz continuous such that

0n =γf(0n,qeq(0n), t) (4a)
qeq(p) =g(qeq(p),p, t). (4b)

We call reduced system the system given by

pt+1 = pt + γf(pt,qeq(p
t), t) (5)

and boundary system layer with q̃ ∈ Rm the system

q̃t+1 = g(q̃t + qeq(p
t),pt, t)− qeq(p

t). (6)

Assume that there exist continuous function u(•) and gain
γ̄1 > 0 such that, for any γ ∈ (0, γ̄1), there exist
b1, b2, b3, b4 > 0 and values q̃, q̃1, q̃2 ∈ Rm such that

b1||q̃||2 ≤ u(q̃, t) ≤ b2||q̃||2 (7a)

u(q̃t+1, t+ 1)− u(q̃t, t) ≤ −b3||q̃||2 (7b)
|u(q̃1, t)−u(q̃2, t)|≤b4||q̃1−q̃2||(||q̃1||+||q̃2||). (7c)

Also, assume that there exists a continuous function w(•),
and gain γ̄2 > 0 such that, for any γ ∈ (0, γ̄2), there exist
c1, c2, c3, c4 > 0 and values p,p1,p2 ∈ Rn such that

c1||p||2 ≤ w(p, t) ≤ c2||p||2 (8a)

w(pt+1, t+ 1)− w(pt, t) ≤ −c3||p||2 (8b)
|w(p1, t)−w(p2, t)|≤c4||p1−p2||(||p1||+||p2||). (8c)

Then, there exists γ̄ ∈ (0,min(γ̄1, γ̄2)) and gains κ1, κ2 > 0
such that, for any γ ∈ (0, γ̄) and (p0,q0), it holds that∣∣∣∣∣∣∣∣( pt − p∗

qt − qeq(p
t)

)∣∣∣∣∣∣∣∣ ≤ κ1

∣∣∣∣∣∣∣∣( p0

q0 − qeq(p
0)

)∣∣∣∣∣∣∣∣ e−κ2t, (9)

where p∗ ∈ Rn is the desired equilibrium of p.
Conditions (7a), (8a), (7b), (8b) come from standard Lyapunov
stability arguments, whereas (7c) and (8c) bound the changes
in the Lyapunov functions w(p, t) and u(q̃, t) to apply Lya-
punov exponential stability arguments.



C. ADMM Gradient Tracking

As introduced in Section I, a recent paper [26] proposes
a first order distributed optimization algorithm that combines
ADMM and GT to obtain a robust linearly convergent algo-
rithm. Algorithm 1 presents such scheme. Each node i updates

Algorithm 1 Original [26] ADMM-GT at node i

1: State of agent: x0
i ∈ Rn, z0ij ∈ R2n ∀j ∈ Ni

2: Parameters: γ > 0, ρ > 0, α ∈ (0, 1)
3: for t = 1, . . . do
4: yt+1

i = 1
1+ρdi

(xt
i +
(
In 0n×n

)∑
j∈Ni

ztij)

5: st+1
i = 1

1+ρdi
(∇fi(x

t
i) +

(
0n×n In

)∑
j∈Ni

ztij)

6: zt+1
ij = (1− α)ztij − α(ztji − 2ρ

(
yt+1
i

st+1
i

)
) ∀j ∈ Ni

7: xt+1
i = xt

i + γ(yt+1
i − xt

i)− γst+1
i

8: end for

four variables. First, xt
i is the variable that estimates the global

optimum x∗. The variable yt
i reconstructs the average of the

estimates over the nodes of the network 1
N

∑N
i=1 x

t
i and aims

at eliminating the consensus error. The variable sti reconstructs
the average of the gradients 1

N

∑N
i=1 ∇fi(x

t
i) and aims at

reducing the error eti = ||xt
i − x∗||. Finally, ztij ∈ R2n are

auxiliary variables that enforce consensus over yt
i and sti [16].

One fundamental aspect of Algorithm 1 is
that, by conveniently rewriting the dynamics of
xt = [(xt

1)
⊤, . . . , (xt

N)
⊤]⊤ and zt = [(zt1)

⊤, . . . , (ztN)
⊤]⊤

(with zti = [(zti1)
⊤, . . . , (ztidi

)⊤]⊤), it can be shown that
the overall dynamics of the scheme have the structure of
a time-varying singularly perturbed system [25]. Therefore,
relying on Theorem 1, for a sufficiently small γ, Algorithm 1
converges linearly to the global optimum of (1).

In the following section, we present an algorithm that, by
adding momentum to the dynamics of yt

i , s
t
i and ztij , speeds

up the convergence while preserving the computation and
communication properties of Algorithm 1.

III. ACCELERATED ADMM GRADIENT TRACKING

The proposed accelerated distributed optimization scheme
is presented in Algorithm 2. Algorithm 2 adds momentum to
the dynamics of yt

i and sti (lines 6 and 7) and the dynamics
of ztij (line 9). The former allows to write Algorithm 2
as a chain of two singularly perturbed systems. The outer
singularly perturbed system interconnects the dynamics given
by yt

i and sti with the dynamics given by xt
i and zti. The

inner singularly perturbed system interconnects the dynamics
given by zti with the dynamics given by xt

i. In terms of
convergence speed, there are three time-scales, from the fastest
to the slowest: (1) yt

i , ȳ
t
i , s

t
i, s̄

t
i; (2) zti, z̄

t
i; and (3) xt

i. This
time-scale separation leads to a novel convergence analysis
of the ADMM-GT algorithm, discovering a limitation in the
maximum achievable convergence rate of the dynamics of zti.
By adding momentum to zti this bound is overcome, enhancing
the overall convergence rate when compared to Algorithm
1. Additionally, by respecting the ADMM gradient tracking
structure of Algorithm 1, Algorithm 2 preserves the robustness

Algorithm 2 A2DMM-GT at node i

1: State of agent: x0
i ∈ Rn, z0ij ∈ R2n ∀j ∈ Ni,

z−1
ij ∈ R2n ∀j ∈ Ni, y0

i ∈ Rn, s0i ∈ Rn

2: Parameters: γ > 0, ρ > 0, α ∈ (0, 1), λ ∈ (1, 2), µ ∈
(1, 2), ϵ ∈ (0, 1)

3: for t = 1, . . . do
4: ȳt+1

i = 1
1+ρdi

(xt
i +
(
In 0n×n

)∑
j∈Ni

ztij)

5: s̄t+1
i = 1

1+ρdi
(∇fi(x

t
i) +

(
0n×n In

)∑
j∈Ni

ztij)

6: yt+1
i = yt

i + λ(ȳt+1
i − yt

i)
7: st+1

i = sti + λ(s̄t+1
i − sti)

8: z̄t+1
ij = (1− α)ztij − α(ztji − 2ρ

(
yt+1
i

st+1
i

)
) ∀j ∈ Ni

9: zt+1
ij = µ(ztij + ϵ(z̄t+1

ij −ztij))+(1−µ)zt−1
ij ∀j ∈ Ni

10: xt+1
i = xt

i + γ(yt+1
i − xt

i)− γst+1
i

11: end for

from ADMM proved in [26] and the computational simplicity
of gradient tracking methods (the momentum operations are
inexpensive to compute). Comparing Algorithms 1 and 2,
their communication cost is the same since only the ztij are
exchanged. In terms of memory, each node has to additionally
store zt−1

ij , yt
i , s

t
i.

To analyze the convergence properties of Algorithm 2, we
define the following matrices:

Ax=diag

({(
1di,n

0di,n

)}N

i=1

)
,Az=diag

({(
0di,n

1di,n

)}N

i=1

)

A = diag
(
{1di,2n}

N
i=1

)
,H = diag

({
In

1 + ρdi

}N

i=1

)
.

Besides, P ∈ {0, 1}2nd×2nd is a permutation matrix that
exchanges auxiliary variable ztij with auxiliary variable
ztji and implements the pairwise message passing found
in line 8 of Algorithm 2, xt = [(xt

1)
⊤, . . . , (xt

N)
⊤]⊤,

zt = [(zt1)
⊤, . . . , (ztN)

⊤]⊤, zti = [(zti1)
⊤, . . . , (ztidi

)⊤]⊤,
yt = [(yt

1)
⊤, . . . , (yt

N)
⊤]⊤ and st = [(st1)

⊤, . . . , (stN)
⊤]⊤.

Finally, let g(xt) = [(∇f1(x
t
1))

⊤, . . . , (∇fN(x
t
N))

⊤]⊤ and
v(yt, st) = [(yt

1)
⊤, (st1)

⊤, . . . , (yt
N)

⊤, (stN)
⊤]⊤.

Exploiting these definitions, Algorithm 2 for the whole
network can be written as

yt+1 =(1− λ)yt + λH(xt +A⊤
x z

t), (10a)

st+1 =(1− λ)st + λH(g(xt) +A⊤
z z

t), (10b)

zt+1 =µFzt+(1− µ)zt−1+2µϵαρPAv(yt+1, st+1), (10c)

xt+1 =xt + γ(yt+1 − xt)− γst+1 (10d)

where F = (1 − ϵα)I2nd − ϵαP. The compact expression
in (10) can be reformulated as an interconnection of two
singularly perturbed systems. In Fig. 1 we represent the
interconnections between the dynamics of xt, zt, yt and st.
The inner system (green) connects the dynamics of xt (slow)
and the dynamics of zt (fast). Indeed, if µ = ϵ = 1, the
inner system corresponds to the singularly perturbed system
studied in [26]. On the other hand, the outer system is also
a singularly perturbed system given by rt = [(yt)⊤, (st)⊤]⊤,



wt = [(xt)⊤, (zt)⊤, (zt−1)⊤]⊤, v(rt) = v(yt, st), and

rt+1 =(1− λ)rt + λ

(
H(xt +Axz

t)
H(g(xt) +Azz

t)

)
=

(1− λ)rt + λh(wt),

(11)

wt+1 =

(1− γ)INn 0Nn×2nd 0Nn×2nd

02nd×2nd µF (1− µ)I2nd
02nd×2nd I2nd 02nd×2nd

wt+

γ
(
INn −INn

)
rt

2µϵαρPAv(rt)
02nd

 = Qwt +B(rt).

(12)

Given an arbitrary constant wt = w for all t, let function
req(w) from (11) be

req(w) = (1− λ)req(w) + λh(w) ⇒ req(w) = h(w). (13)

Then, we define the error coordinates r̃t = rt − req(w).
Regarding the slow system dynamics (12), we define the
desired equilibrium w∗ as

w∗ =

 x∗

2(I2nd +P)−1ρPAv(req(w
t))

2(I2nd +P)−1ρPAv(req(w
t))

 , (14)

where we have exploited the fact that z∗ can be arbitrarily cho-
sen, making it coincide with the value of zt when zt = zt−1,
which is the steady-state value of zt in Eq. (10c). Finally, we
define the error dynamics w̃t = wt −w∗.

We aim at exploiting Theorem 1 to prove the convergence
properties of Algorithm 2. To do so, we first study the
convergence properties of the boundary system layer error
dynamics r̃t+1 and the reduced system error dynamics w̃t+1

by drawing their equivalence with the fast (3b) and slow (3a)
dynamics respectively, proving that conditions (7a)-(7c) and
(8a)-(8c) hold. In Lemmas 1 and 2 we prove that r̃t+1 can
be written in the form of Eq. (3b) and w̃t+1 in the form of
Eq. (3a). After that, Proposition 1 resorts to Theorem 1 to
prove the global exponential stability of the dynamics of r̃t+1

and w̃t+1 and, consequently, the global exponential stability
of Algorithm 2. Finally, we use Lemma 2 to demonstrate that
Algorithm 2 leads to acceleration with respect to Algorithm 1,
formalized through Theorem 2, where we substitute the slow
state from p to w̃ and the fast state from q to r̃.

Lemma 1: Let wt = w. There exists a continuous function
u(r̃t, t) such that, for λ ∈ (1, 2), (7a), (7b) and (7c) hold.

Proof: The boundary system layer dynamics of (11) is

r̃t+1=rt+1−req(w)=(1−λ)(r̃t+req(w))+λh(wt)−req(w),
(15)

from which, using (13), it is derived that r̃t+1 = (1 − λ)r̃t.
Thus, if λ ∈ (1, 2), then the error dynamics of r̃t+1 is globally
exponentially stable and the conditions (7a), (7b) and (7c)
are satisfied by choosing as Lyapunov function u(r̃t, t) =
1
2 (r̃

t)⊤r̃t.
Lemma 2: Let rt = req(w

t), λ, µ ∈ (1, 2), γ > 0,
ϵ, α ∈ (0, 1) and ρ > 0. There exists a continuous function
w(w̃t, t) such that (8a), (8b) and (8c) hold.

Proof: First, the error dynamics w̃t+1 are

w̃t+1 =Q(w̃t +w∗) +B(req(w
t))−w∗ ⇒ (16)

Fig. 1: Representation of Algorithm 2 as an interconnection
of two singularly perturbed systems. The outer singularly
perturbed system connects the dynamics of the consensus
variables rt and the estimates/auxiliary variables wt. The
inner singularly perturbed system connects the dynamics of
the estimates xt and the auxiliary variables zt.

w̃t+1=Qw̃t+

 −γx∗

µFz∗ − µz∗

z∗ − z∗

+B(req(w
t)). (17)

By substituting the definition of z∗ from Eq. (14) in matrix
B(req(w

t)) of Eq. (17), we obtain that

w̃t+1 = Qw̃t +

−γx∗ + γ
(
INn −INn

)
h(wt)

02nd

02nd

 . (18)

According to (18), the error dynamics associated to zt+1 and
zt do not depend on xt(

z̃t+1

z̃t

)
=

(
µF (1− µ)I2nd
I2nd 02nd×2nd

)(
z̃t

z̃t−1

)
=L

(
z̃t

z̃t−1

)
, (19)

so they can be independently analyzed. Moreover, (19) can be
rewritten in the form of (3a) by adding and subtracting the
identity matrix from L. On the other hand, the error dynamics
associated to xt

x̃t+1= x̃t+γ(H(xt+Axz
t)−xt)−γH(g(xt)+Azz

t) (20)

are the error dynamics of the reduced system of the inner
singularly perturbed system, which are the same to those
analyzed in [26]. In particular, Theorem III.1 in [26] proves
that Algorithm 1 is globally exponentially stable when ρ > 0,
α ∈ (0, 1) and γ > 0 sufficiently small. Conveniently, the
proof of Theorem III.1 in [26] refers to the same dynamics
in (20), and therefore the result can be applied. However, this
result holds only if the dynamics in (19) are also globally
exponentially stable. Otherwise, Theorem 1 applied to the
dynamics of xt and zt does not hold. Therefore, the next
step is to prove the global exponential stability of (19). The
error dynamics in (19) are globally exponentially stable if
and only if {|σl(L)| < 1}4ndl=1 . Taking into account that
det(L − σI4nd) = 0 and that F = (1 − ϵα)I2nd − ϵαP,

the eigenvalues of L are

−σ2 + σ(µ− µαϵ± µαϵ) + (1− µ) = 0. (21)



The ± in (21) comes from the fact that det(P) = (−1)p,
where p is the number of permutations. If p is even,

−σ2 +µσ+ (1−µ) = 0 ⇒ σ =
µ

2
±
√

µ2

4
+ (1− µ). (22)

From (22), −1 < σ < 1. If µ ∈ (1, 2). If p is odd, then

−σ2 + µ(1− 2αϵ)σ + (1− µ) = 0. (23)

Equation (23) implies that

−1 <
µ(1− 2ϵα)

2
±
√

µ2

4
(1− 2ϵα)2 + (1− µ) < 1. (24)

By solving the four inequality equations in (24) and taking
the more restrictive conditions, we obtain that ϵα ∈ (0, 1),
and since α ∈ (0, 1), then ϵ ∈ (0, 1). Therefore, if ϵ ∈ (0, 1)
and µ ∈ (1, 2), then the error dynamics in (19) are globally
exponentially stable. This implies that the error dynamics in
(20) are globally exponentially stable as well and the condi-
tions for the inner singularly perturbed system in Theorem 1
hold. Subsequently, the error dynamics in (18) are globally
exponentially stable and there exist a Lyapunov function
w(w̃t, t) such that (8a), (8b) and (8c) are satisfied.

Proposition 1: Consider Algorithm 2 with ρ > 0,
α, ϵ ∈ (0, 1) and λ, µ ∈ (1, 2). Then, there exists γ̄, c1, c2 > 0
such that, for any γ ∈ (0, γ̄), (x0, z0, z−1,y0, s0), it holds
that ||xt − 1⊤

N,nx
∗|| ≤ c1e

−c2t.
Proof: Let w̃t correspond to the error state of the

slow dynamics in (3a) and r̃t the error state of the fast
error dynamics in (3b). According to Lemmas 1 and 2, the
conditions (7a)-(8c) hold for the error dynamics of w̃t and
r̃t respectively. Besides, from the definition of req(wt) it can
be verified that condition (4) holds. Then, Theorem 1 can be
invoked to prove the global exponential stability of w̃t and r̃t.
By changing the coordinates from w̃t and r̃t to wt and rt,
the proof ends.

Proposition 1 establishes that Algorithm 2 linearly con-
verges to the global optimum x∗. Nevertheless, acceleration
is not proved yet. This is proved in the next theorem.

Theorem 2: Consider ρ > 0, α ∈ (0, 1) and λ ∈ (1, 2),
and γ > 0 sufficiently small. Also, let β1 and β2 be the
convergence rate of the dynamics of zt for Algorithm 1 and 2
respectively. Then, Algorithm 2 always converges faster than
Algorithm 1 (β2 < β1) for any ϵ ∈ (0, 1) and µ ∈ (1, 2).

Proof: In Lemma 2 Eq. (19) it is proven that the dy-
namics of z̃t are determined by L. Therefore, the convergence
rate of z̃t and subsequently zt is given by max({|σl(L)|}4ndl=1).
Therefore, we have that

max({|σl(L)|}4ndl=1) = max

(∣∣∣∣∣µ2 +

√
µ2

4
+ (1− µ)

∣∣∣∣∣ ,∣∣∣∣∣µ(1− 2ϵα)

2
+

√
µ2

4
(1− 2ϵα)2 + (1− µ)

∣∣∣∣∣
)
.

Moreover, notice that Algorithm 1 is Algorithm 2 with
µ = ϵ = 1. Thus, β1 = max(1, |1 − 2α|) for Algo-
rithm 1. Under the assumption that no integral term
is present, β1 = |1− 2α|; otherwise, β1 = 1. On the

other hand, under the constraints on µ, α, ϵ in Propo-

sition 1, we have that
∣∣∣µ2 +

√
µ2

4 + (1− µ)
∣∣∣ < 1,

and also
∣∣∣µ(1−2ϵα)

2 +
√

µ2

4 (1− ϵα)2 + (1− µ)
∣∣∣ < |1− 2α|.

Henceforth, β2 < β1.
Proposition 1 establishes that the slow and fast dynamics

of Algorithm 2 must evolve at different time-scales to ensure
convergence. Therefore, the convergence rate of the auxiliary
variables determines the convergence speed of the optimum
estimates. Thanks to adding momentum, γ, ρ and α can
be increased without violating the conditions of time-scale
decoupling of singularly perturbed systems, improving the
convergence speed.

IV. ILLUSTRATIVE EXAMPLE

We compare our algorithm (A2DMM-GT) with the one
in [26] (ADMM-GT), the accelerated gradient tracking ap-
proaches in [14] (AGT) and [19] (A2GT), and the older
distributed gradient tracking protocol in [13] (DIGing). We
consider two settings. First, a quadratic programming setup,
that arises in robotic, smart grid or feature selection applica-
tions [29]. We set N = 200, n = 2 and fi(x) = x⊤Bix+aix,
where Bi is a positive definite matrix with uniformly random
eigenvalues in the range [1, 5] and ai is a random vector with
elements uniformly drawn in the range [−10, 20]. Note that
fi(x) fulfills the assumptions in terms of strong convexity
and Lipschitzness of the gradients. Graph G is generated as a
sparse undirected connected proximity graph, where the nodes
are randomly placed in a 2× 2 square if and only if the new
node is within [0.1, 0.17] from an already placed node. The
parameters for the all the approaches are hand-tuned to achieve
fastest convergence possible: γ = 1.6, α = 0.9924, ρ = 3.028,
λ = 0.2, µ = 1.6, ϵ = 0.6 for A2DMM-GT; γ = 0.4865,
α = 0.8924, ρ = 0.528 for ADMM-GT; α = 0.001, β = 0.9
for AGT (we use the notation in [14]); α = 0.0008, β = 0.7,
γ = 0.2 for A2GT (we use the notation in [19]); γ = 0.0127
for DIGing. We simulate 500 steps. Convergence is assessed
using the evolution of the error et = ||xt − 1N,nx

∗||.
The second setup is a logistic regression scenario where

nodes cooperate to train a linear classifier. In this case,
N = 50, where each node has a local dataset of m = 10 one-
dimensional points pji drawn from a normal distribution of
mean 0 and standard deviation 1. The labels are also randomly
drawn, such that lji ∈ {−1, 1}. We define x = [q1, q2] and
fi(x) =

∑m
j=1 log(1+exp−lji (q1p

j
i+q2))+C||x||2, with C = 1

to ensure strong-convexity. The parameters for all methods are
the same that in quadratic programming setup.

The evolution of the error (Fig. 2) shows that A2DMM-
GT is the fastest method among all the approaches for both
numerical settings, with different network configurations and
local costs. Importantly, this is achieved without increasing
the number of gradient computations per time step nor the
communication burden, leading to a significant reduction in
power consumption and total bandwidth usage in practical
applications. This comes at the cost of increasing the memory
burden compared to the non-accelerated methods. However,
given current advances in MEMS technology, it is generally
better to leverage memory against communication burden.



Fig. 2: Evolution of the error with time for the five protocols
under comparison. Left is the quadratic programming setup,
right is the linear classification setup.

V. CONCLUSIONS

This letter presents a novel accelerated distributed opti-
mization method for the problem of consensus optimization.
The method combines the benefits of momentum to those
from gradient tracking and ADMM algorithms, namely: fast
convergence, simplicity of computation and robustness. From
the theoretical point of view, we prove that, by adding mo-
mentum, we overcome the limitation on the convergence rate
of the auxiliary variables in current ADMM-GT algorithms.
From a practical perspective, we found that our algorithm is
faster than the existing distributed first-order algorithms, while
preserving their lightweight properties in terms of computa-
tion and communication burden. As future work, we aim at
exploring the effect of adding momentum in the step size γ,
the extension of the algorithm to time-varying directed graphs,
and the extension to constrained settings.
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