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Flat-top beam, known for its ability to generate a consistently even irradiation area, holds vast utility in many fields of 

scientific and industrial applications. In this paper, a reflective laser beam shaping method based on two axisymmetric 

aspheric mirrors (AAMs), a polarizing beam splitter (PBS) and two quarter wave plates (QWPs) is proposed to transform 

Gaussian beam into flat-top beam. Compared to alternative beam shaping methods, the method using AAMs demonstrates 

distinct advantages on notably high energy efficiency and unique capability to generate parallel beams. Thanks to its 

relative simplicities of design, manufacture and tunability, AAMs-shaping further enhances its appeal in applied research 

scenarios. 
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1. Introduction 
There is a significant demand for laser beams with flat-top 

intensity distributions in various fields, such as laser 

processing, nonlinear optics, high-energy laser 

amplification, and so on. These applications require a 

precisely shaped laser beam with a consistent power 

distribution, which make the flat-top beam being a highly 

desired tool for these tasks [1-4]. During laser cutting, the 

flat-top beam allows precise material removal in dissolution, 

resulting in sharp edges. As for the laser ablation, flat-top 

laser beam can evenly distribute the welding temperature 

and produce high quality welds. In nonlinear optical 

applications, such as in optical parametric chirped pulse 

amplification (OPCPA) systems, the use of a pump beam 

with a uniform distribution of light intensity can 

significantly enhance the efficiency of pump-to-signal 

conversion [5]. However, most laser resonators are operated 

on stable TEM00 mode, resulting in the generated laser 

beam with a spatial Gaussian distribution. Therefore, it is 

crucial to investigate how to obtain flat-top beam from 

Gaussian beam. 

A great number of beam-shaping methods have been 

proposed to achieve flat-top laser beam like diffractive 

optical element (DOE) [6-9], spatial light modulator (SLM) [10-

12], spatially variable wave plate (SVWP) [13-15], birefringent 

lenses [16], double free-form mirrors [17-18] (somewhat 

analogous to double aspheric lenses [19-20]) and microlens 

array, et al. The shaping methods of DOE and SLM are 

characterized by energy efficiency up to 80% [9,12], but cannot 

obtain collimated flat-top beam after reshaping. 

Alternatively, the methods of SVWP and birefringent lenses 

can maintain the phase of the laser beam, yet their energy 

efficiency is less than 60% [13,16]. Equipped the capability to 

produce a collimated beam, beam shaping with double free-

form mirrors excel among all techniques due to ~100% 

energy efficiency without considering transmission loss or 

reflection loss. 

For the laser beam shaping with a couple of free-form 

mirrors, the first mirror is employed to reshape the intensity 

distribution, while the second one acts as a phase corrector 

to collimate the beam [17]. When reshaping the laser beam 

using double free-form mirrors, the laser beam should 

deviate from its initial optical axis by introducing off-axis 

angles and the surfaces of both mirrors need to be non-

axisymmetric. Consequently, the free-form mirrors are 

characterized without a rotational symmetry axis, resulting 

in the absence of specific geometric characteristics and 

predefined machining references. Compared to the 

processing of axisymmetric mirrors, the machining of free-

form mirrors demands higher requirements on the machine 

tools. A five-axis ultra-precision lathe equipped with fast 

tool servo (FTS) technology is typically required to achieve 

the desired complexity and precision for fabrication of non-

axisymmetric free-form mirrors [21]. In contrast, the 

fabrication of axisymmetric aspherical mirrors (AAMs) can 

be accomplished using a conventional two-axis ultra-

precision lathe, employing grinding and polishing 

techniques.  

In this paper, a beam shaping technique using AAMs is 

proposed and demonstrated to efficiently transform 

Gaussian beam into flat-top beam. For AAMs, the same 

beam shaping effect can be achieved based on a normal 

incidence to axisymmetric mirrors, when combining 

polarization manipulation and perpendicularly reflection of 

the laser beam. During laser alignment, the laser beam can 

be more easily controlled when incident perpendicular to the 

mirror, as compared to incident it at a specific angle for the 

case of double free-form mirrors.  

This paper is structured as follows. In Sect. 2, the universal 

equation for the surface profiles of two free-form mirrors is 

derived for beam shaping. In Sect. 3, the reshaping from 

Gaussian beam to flat-top beam is further realized based on 

the curve equations of the two free-form mirrors in polar 

coordinate system. The above curve equations are simplified 

for AAMs in Sect. 4 and the numerical demonstration is 

carried out in Sect. 5. In Sect. 6, two processed AAMs are 

experimentally demonstrated to transform Gaussian beam 

into flat-top beam and a brief discussion is given in Sect.7. 

2. Derivation of two surface equations 
Since axisymmetric aspheric mirrors are specific cases of 

non-axisymmetric free-form mirrors, the generalized 

description of surface can be solved using two second-order 

partial differential equations (PDEs) of Monge–Ampère 

type [18]. If both the input and the output laser beam have 



axisymmetric intensity profiles, such as Gaussian beam and 

flat-top beam, the two PDEs above can be simplified to one 

ordinary differential equation (ODE).  

Figure 1 illustrates a beam shaping system comprising of 

two free-form mirrors, designed specifically to transform 

Gaussian beam into flat-top beam. The two Cartesian 

coordinate system (𝑥, 𝑦, 𝑧)  and (𝑋, 𝑌, 𝑍)  are established 

respectively on two free-form mirrors, where the contact 

points serve as the origin and the incident direction of the 

laser beam are denoted as the z-axis and Z-axis, respectively. 

We assume that the origin of the Cartesian coordinate 

system (𝑥, 𝑦, 𝑧)  in (𝑋, 𝑌, 𝑍)  is (𝑎, 𝑏, 𝑐) . Consequently, the 

transformation relationship between the two coordinates is 

𝑋 = 𝑥 − 𝑎, 𝑌 = 𝑦 − 𝑏 and 𝑍 = 𝑧 − 𝑐. 

 

Fig. 1. Layout of two non-axisymmetric free-form mirrors. 
The purple line(L) represents the central ray of the input 
beam, while the red line represents any other ray of the 

input beam except for the central ray. 

The input laser beam is located in the incident plane 𝑇i, and 

the output laser beam is located in the output plane 𝑇o .  

The input beam projected onto the plane 𝑇i is referred to as 

𝛺i . Similarly, the projection of the output beam onto the 

plane 𝑇i is labeled as 𝑆i, and its projection onto the plane 

𝑇o is designated as 𝑆o.  

The point of intersection between the input beam and the 

output plane 𝑇i is denoted as (𝑥, 𝑦), while its intersection 

with 𝑇o  is represented as 𝑹𝐨(𝑥, 𝑦) . Furthermore, the 

projection of 𝑹𝐨(𝑥, 𝑦)  onto 𝑇i  is labeled as 𝑹𝐢(𝑥, 𝑦) . The 

equations that govern the curvature of the two free-form 

mirrors are solved subsequently to obtain the expressions 

for 𝑧(𝑥, 𝑦)  and 𝑍(𝑋, 𝑌) . The relationship among the 

coordinate projections (𝑥, 𝑦) , 𝑹𝐢(𝑥, 𝑦)  and the curve 

equation 𝑧(𝑥, 𝑦) of the first mirror [18] can be established as 
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This PDE can be rewritten as 
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Currently, we only require expressions for 𝑋(𝑥, 𝑦)  and 

𝑌(𝑥, 𝑦). The equation for the curve of the first mirror can be 

got by integrating over ∇𝒛. As for the curve equation of the 

second free-form mirror, the coordinates (𝑥, 𝑦) and 𝑹𝐢(𝑥, 𝑦) 

should have the same curvature at the corresponding points 

on both mirrors to guarantee the input and output laser 

beams are parallel. Therefore, the relationship between ∇𝒛 

and ∇𝒁 can be derived as follows 
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3. Reshaping Gaussian beam into flat-top beam 
In the previous section, the equations 𝑧(𝑥, 𝑦) and 𝑍(𝑋, 𝑌) 

are acquired from 𝑋(𝑥, 𝑦)  and 𝑌(𝑥, 𝑦)  for the two 

corresponding aspheric mirrors. In this section, the focus is 

on deducing the expressions for 𝑋(𝑥, 𝑦)  and 𝑌(𝑥, 𝑦)  that 

reshape Gaussian beam into flat-top beam. By doing so, the 

expressions for 𝑧(𝑥, 𝑦)  and 𝑍(𝑋, 𝑌)  are obtained, which 

describe the curvature of the mirrors required to achieve 

this beam transformation. 

The intensity distribution of Gaussian beam is 
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There are numerous functional forms that can be utilized to 

represent the intensity distribution of a flat-top beam, 

including the Super-Gaussian function, Flattened-Gaussian 

function, and Flattened-Lorentz function [22,23]. To facilitate 

function integration and variable separation, the Flattened-

Lorentz function is selected as the fitting function for the 

intensity distribution of the flat-top beam. In Eq. 4 and 5, 𝐼1 

and 𝐼2 denote the intensity of light beams at the interface 

centers of the input and output beams, respectively. 
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Here, q is associated with the steepness of the edge of the 

Flattened-Lorentz function. As q increases, the edge of the 

Flattened-Lorentz function becomes steeper. 𝑅FL 

corresponds to the radius of the flat-top beam. To meet 

energy conservation requirement, the integral of the laser 

beam intensity over the entire plane is normalized as 
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The solutions to these two equations are 𝐼1 = 2 (𝜋 ∙ 𝑤2)⁄  

and 𝐼2 = 1 (𝜋 ∙ 𝑅FL
2)⁄ . The energy conservation for a fixed 

azimuth angle is employed to determine the coordinate 

correspondence between the two coordinate systems 
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Thus, the relations between the input and output beams can 

be obtained from Eq. 7 
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From Eq. 2, we can obtain 
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The coordinate conversion relation between Cartesian 

coordinate system and polar coordinate system is 𝑥 = 𝑟𝑐𝑜𝑠𝜃, 

𝑦 = 𝑟𝑠𝑖𝑛𝜃, 𝑋 = 𝑅𝑐𝑜𝑠𝛩, 𝑌 = 𝑅𝑠𝑖𝑛𝛩. The relationship between 

(𝑅, 𝛩)  and (𝑟, 𝜃)  can be found in Eq. 8, therefor the 

differential equations in polar form are 
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The expression of 𝑧(𝑟, 𝜃) can be obtained by integrating the 

following equation as 
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The distribution of the input beam can be obtained by 

inverting Eq. 8 as  
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Likewise, the expressions of 𝜕𝑍 𝜕𝑅⁄  and 𝜕𝑍 𝜕𝛩⁄  are 
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The expression of 𝑍(𝑅, 𝛩) can be obtained like Eq. 11. 

 

4. Design of axisymmetric free-form mirrors 
Now that the curve equations for the two mirrors is obtained 

in their general form, some specific optical layouts for 

shaping can be achieved by tuning the values of a, b, and c. 

Here two representative layouts are illustrated in Fig. 2. 

 

 

Fig. 2. Two representative layouts for two-mirrors system: 
(a) 45 degrees of incidence for 𝑏 = 0 and 𝑐 = 0 ; (b) 
Normal incidence for 𝑎 = 0 and 𝑏 = 0, where the 

separated rays between two mirrors is just for clarity 
purposes. 

a) 45 degrees of incidence for 𝑏 = 0 and 𝑐 = 0 

When 𝑏 = 0 and 𝑐 = 0, the beam is incident at 45 degrees 

on both free-form mirrors. Under this condition, Eq. 10 and 

Eq. 13 can be simplified as 
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The expressions of 𝑧(𝑟, 𝜃) and 𝑍(𝑅, 𝛩) are 
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From Eq. 16, it is evident that the expressions for 𝑧(𝑟, 𝜃) 

and 𝑍(𝑅, 𝛩) consist of two components: the integral term 

and the angle term. In conjunction with the beam path 

diagram, it becomes apparent that the angle term only 

serves to the deviation from its intended angle. Therefore, 

the integral term should be viewed as the primary 

contribution to beam shaping. 



The shapes of the two aspheric mirrors are not only 

influenced by r and R, but also by 𝜃 and 𝛩, resulting in a 

non-axial symmetry of the two mirrors. 

b) Normal incidence of 𝑎 = 0 and 𝑏 = 0 

It is evident that adjusting the non-axisymmetric mirror 

form involves more complexity than adjusting the 

axisymmetric aspheric mirror form. Furthermore, the 

axisymmetric mirror is easier to process, resulting in a 

higher surface accuracy. By setting 𝑎 =  0 and 𝑏 =  0, it 

can be deduced that the surface equations of the mirrors at 

this time are axisymmetric, as shown in Eq. 17 and Eq. 18 
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Integrate Eq. 17 and Eq. 18, we can obtain 
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When 𝑎 = 0 and 𝑏 = 0, the beam path is normal incident 

to shaping system and free-form mirrors can be simplified 

to AAMs, which are shown in Fig. 2(b). However, since the 

laser beam is incident perpendicularly on both mirrors, 

additional optical components are required to separate the 

output shaped beam from the input beam.  

 

5. Simulation and Verification of AAMs-shaping 
 

To realize the separation of the incident unshaped beam and 

the output shaped beam, the polarization is manipulated 

when the laser passing through two AAMs, as shown in Fig. 

3. Here a polarizing beam splitter (PBS) reflects s-polarized 

beams while transmitting p-polarized beams, and two 

quarter-wave plates (QWPs) are employed to convert s-

polarized beams into p-polarized beams and vice versa. A 

combination of a mirror and a QWP has the capability to 

induce a polarization state transition of the linearly 

polarized light. This approach ensures the accomplishment 

of beam shaping by utilizing AAMs, ensuring that the laser 

beam can vertically incident on two AAMs. 

 

Fig. 3. AAMs-shaping system based on polarization control. 
The blue (black) arrow represents s-polarized (p-polarized) 

beam and the red arrow represents circularly polarized 
beam, respectively. 

Restricted by laser-optical processing technology, AAMs 

exist unavoidable surface roughness, thus leading to 

intrinsic errors for shaped profiles. In order to accurately 

model the impact of mirror errors on shaping outcomes, 

errors with Peak-to-Valley (PV) values of 1nm, 10nm, 

100nm, and 1μm are systematically introduced, where the 

corresponding root-mean -square (RMS) values are 0.3nm, 

3nm, 30nm, and 300nm, respectively. Figure 4 illustrates 

four flat-top shaping results with different PV accuracies of 

AAMs based on the simulation results. One can see that the 

flat-top shaping can be achieved with the PV values less 

than 100nm.  

 

Fig. 4. Impact of varied machining accuracy on beam 
shaping results:(a) PV Value: 1nm (b) PV Value: 10nm (c) 
PV Value: 100nm (d) PV Value: 1μm Here q is set to 50 

and 𝑅FL is fixed to 12mm. 

To quantify the disparity between the actual beam and the 

ideal beam, the root-mean-square error (RMSE) is employed 

and mathematically expressed as  
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Here, 𝐴(𝑟)  represents the actual intensity distribution, 

while 𝐵(𝑟) represents the ideal intensity distribution. The 

corresponding RMSE values for PV accuracies of 1nm, 10nm, 

100nm, and 1μm are 0.26%, 5.61%, 9.96% and 42.63%, 

respectively. Thus, without considering the initial error in 

the beam spot size, to maintain the RMSE value below 10%, 

it is imperative to ensure that the mirror processing error 



remains below the PV value of 100nm. Indeed, the 

simplified machining process and enhanced controllability 

of machining accuracy inherent to AAMs render the 

attainment of such machining precision notably more 

achievable. 

Apart from mirror errors, the size errors of the input beam 

also play a significant role in influencing the shaping 

outcomes of the beam. Seen from Fig.4(a) and Fig.4(b), a 

perfect shaped flat-top beam with FWHM beam radius of 

12mm can be transformed from an initial Gaussian beam 

with waist radius of 6mm. Figure 4(c) and Figure 4(d) show 

two different waist radius of the input beam, respectively. 
In the simulation, the accuracy of both AAMs is upheld to 

the 10nm level, with no additional mirror errors 

incorporated. 

The RMSE for Fig. 4(b), 4(c), and 4(d) can be computed as 

3.46%, 18.97% and 14.67%, respectively. Therefore, under 

the assumption of ignoring the processing error of AAMs, if 

the spot size error is controlled not less than 8%, the RMSE 

of the light intensity distribution can be kept below 20%. 
This rigorous control over the spot size error is 

indispensable for achieving the desired accuracy during 

beam shaping. Equation 8 reveals that the relationship 

between 𝑅/𝑅FL and 𝑟2/𝑤2 is significant, thereby allowing 

for the extrapolation of the relative data of 8% and 20% to 

all parameters. 

 

Fig. 4. Simulation results of flat-top beam shaping from 
various input beam sizes of Gaussian beam: (a) The 

intensity distribution of the input beam; (b-d) The desired 
intensity distribution of the output beams for various input 

beams sizes of (b)𝑤 = 6𝑚𝑚/(c)𝑤 = 6.5𝑚𝑚/(d)𝑤 = 5.5𝑚𝑚.  

6. Experimental Demonstration 
To experimentally investigate the shaping of flat-top beam 

from Gaussian beam, two axisymmetric aspheric mirrors 

were machined by a single point diamond turning method 

with machining accuracy of RMS 1/10λ at 532nm. 

The experimental setup for beam shaping and diagnostic is 

shown in Fig. 6, where a He-Ne laser is utilized. An image 

transmission is employed to match the entire shaped beam 

with CCD chip size. 

 

Fig. 6. The AAMs-shaping experimental setup. 1- protected 
silver mirrors, 2-iris, 3-lenses used for beam expansion, 4-
HWP, 5-polarizer, 6-PBS, 7-QWP, 8-the first AAM, 9-the 
second AAM, 10- lenses used for image transmission, 11- 

optical filter, 12-CCD camera. 

Figure 7(a) shows the intensity distribution of the input 

laser beam after expanding beam waist radius from 1.21mm 

to 6.05mm, while Fig. 7(b) shows the intensity distribution 

of the laser beam after shaping, located at 3cm away from 

the PBS.  

 

Fig. 7. Experiment results of beam shaping: (a) The 
intensity distribution of the input beam. (b) The intensity 

distribution of the output beam 

Figure 7 shows the RMSEs for the input and output beams 

are 3.02% and 12.31%, respectively, in good agreement with 

the simulation result with the PV value of 100nm (the rms 

value of 30nm). Obviously, the machining error of the two 

aspheric mirrors and the nonideal Gaussian input beam 

contribute to the increase of RMSE. Additionally, the energy 

efficiency of the beam shaping system is calculated by 

comparing the number counted by CCD before and after 

beam shaping with the same filters, resulting in an energy 

efficiency of ~74%. Multiple factors limit the lossless 

transmission during the flat-top beam shaping, including 

the reflection loss associated with AAMs and the 

transmission loss of polarization manipulation optics. 

To study the intensity evolution of the shaped flat-top 

distribution along the beam propagation, a numerical 

calculation based on Fresnel diffraction equation is 

conducted. Figure 8 show the measured intensity evolutions 

of the shaped beams for the propagation distances of 2.5m 

and 4m in air respectively, entirely consistent with the 

simulation results.  



 

Fig. 8. The evolution of flat-top beam intensity distribution 
after propagating 2.5m (a, b) and 4m (c, d) in air, 

respectively, with the comparison between the simulated 
profiles (a, c) and experimental profiles (b, d). 

Since this shaping rely heavily on the polarization 

manipulation, stringent requirements on the performance 

of polarization optics are necessary, such as a high 

extinction ratio and a precise working angle. Failure to 

achieve these may result in portions of the beam oscillating 

continuously between the two AAMs, thereby causing 

noticeable diffraction stripes in the shaped beam. An 

additional isolator can inhibit the two-beam diffraction by 

allow forward beam to pass through and isolate reverse 

beam, as shown in Fig. 9.  

 

Fig. 9. An improved shaping system by inserted an isolator 

 
7. Conclusion 

In this paper, a beam shaping method based on AAMs and 

polarization manipulation has been experimental 

demonstrated with efficiency of more than 70%, alleviating 

the stringent demands of the mirror processing and 

adjustment in universe free-form mirrors. The RMSE value 

to evaluate the effect of flat-top distribution is calculated to 

12.3%, coincide with the simulated result for the influence 

of the AAMs surface accuracy. According the simulated 

verification, the flat-top shaping can be easily achieved with 

the RMSE value<10% when the machining errors with 

Peak-to-Valley (PV) values<100nm. Both simulation and 

experiment results show that the beam size of the input 

Gaussian beam has a great influence on the expected beam 

shaping, so that the beam size should be as close as possible 

to the specific value. This method based on axisymmetric 

aspheric mirrors paves the way to convenient conversion 

between various beam profiles.  
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