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Shear-thinning viscosity is a non-Newtonian behaviour that active particles often en-
counter in biological fluids such as blood and mucus. The fundamental question of
how this ubiquitous non-Newtonian rheology affects the propulsion of active particles
has attracted substantial interest. In particular, spherical Janus particles driven by
self-diffusiophresis, a major physico-chemical propulsion mechanism of synthetic active
particles, were shown to always swim slower in a shear-thinning fluid than in a New-
tonian fluid. In this work, we move beyond the spherical limit to examine the effect
of particle eccentricity on self-diffusiophoretic propulsion in a shear-thinning fluid. We
use a combination of asymptotic analysis and numerical simulations to show that shear-
thinning rheology can enhance self-diffusiophoretic propulsion of a spheroidal particle, in
stark contrast to previous findings for the spherical case. A systematic characterization
of the dependence of the propulsion speed on the particle’s active surface coverage has
also uncovered an intriguing feature associated with the propulsion speeds of a pair
of complementarily coated particles not previously reported. Symmetry arguments are
presented to elucidate how this new feature emerges as a combined effect of anisotropy
of the spheroidal geometry and nonlinearity in fluid rheology.

Key words: Authors should not enter keywords on the manuscript, as these must be
chosen by the author during the online submission process and will then be added during
the typesetting process.

1. Introduction

Due to their small sizes, swimming microorganisms such as bacteria and spermatozoa
live in a low-Reynolds-number world, where viscous forces dominate inertial forces. They
use a variety of strategies to overcome the challenge of generating self-propulsion at low
Reynolds number (Purcell 1977). Extensive studies have elucidated the hydrodynamics of
these biological propulsion mechanisms and shed light on their profound roles in various
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biological processes (Fauci & Dillon 2006; Lauga & Powers 2009). In recent decades,
there are also growing interests in developing synthetic active particles that can self-
propel like living microorganisms for biomedical and microfluidic applications, including
self-assembly (Schwarz-Linek et al. 2012; Wensink et al. 2014), drug delivery (Gao &
Wang 2014), and motion-based microsensing (Kagan et al. 2009). Some synthetic active
particle designs are inspired by biological systems, such as artificial helical propellers
(Zhang et al. 2009; Ghosh & Fischer 2009), which mimic the helical structure of bacterial
flagella (Lauga 2016). Other novel designs exploit different physical or physico-chemical
mechanisms to achieve self-propulsion (Schweitzer & Farmer 2003; Bechinger et al. 2016;
Patteson et al. 2016; Moran & Posner 2017).
In particular, a major class of synthetic active particles converts chemical energy into

motility by asymmetric chemical reactions on the particle surface. A variety of novel
synthetic active colloids has been developed (Patiño et al. 2018; Buttinoni et al. 2012;
Zhou et al. 2018). For instance, microspheres half-coated in platinum, also known as
Janus particles, can self-propel via catalytic decomposition of hydrogen peroxide on
the platinum-coated surface (Howse et al. 2007; Sánchez et al. 2015). While the exact
mechanism underlying the resulting motion is still under debate (Brown & Poon 2014;
Ebbens et al. 2014; Eloul et al. 2020), it has been hypothesised that the motion is
diffusiophoretic as a result of the gradients of molecular oxygen produced by the catalytic
decomposition on the half-coated surface (Golestanian et al. 2005, 2007; Moran & Posner
2017). Since the solute concentration gradient is self-generated, the motion of these active
particles is also referred to as self-diffusiophoresis. To model the self-diffusiophoretic
motion, a common approach is to separate the fluid domain into outer (the bulk fluid)
and inner (the interaction layer) regions, where the short-range solute-particle interaction
is assumed to be confined in the interaction layer (Anderson 1989; Jülicher & Prost 2009).
When the interaction layer is thin relative to particle size, the phoretic effects can be
represented by a distribution of effective slip velocities at the particle surface, analogous
to the squirmer model (Lighthill 1952; Blake 1971; Pedley 2016) proposed for swimming
ciliates such as Paramecium and Volvox. While the slip velocity in the squirmer model
is determined by the beating motion of short cilia covering the cell, the slip velocity
of a self-diffusiophoretic particle is proportional to the solute concentration gradient
and phoretic mobility calculated from the interaction potential in the interaction layer
(Anderson 1989; Jülicher & Prost 2009). As a remark, recent studies have indicated that
the standard self-diffusiophoretic framework described may become ineffective when the
reactive species are charged (Brown et al. 2017; De Corato et al. 2020; Asmolov et al.
2022).
Extensive studies have elucidated various interesting features of self-diffusiophoretic

motion in a Newtonian fluid (Moran & Posner 2017). However, most biological fluids such
as blood and mucus display non-Newtonian (complex) rheological behaviors including
viscoelasticity and shear-thinning viscosity (Hwang et al. 1969; Baskurt & Meiselman
2003). Since these synthetic active particles will invariably encounter biological fluids in
their biomedical applications, a fundamental question is how different non-Newtonian
rheological behaviors impact the propulsion of these active particles (Patteson et al.
2016). While many previous theoretical and experimental studies focused on swimming
in viscoelastic fluids (Sznitman & Arratia 2014; Elfring & Lauga 2015; Li et al. 2021;
Spagnolie & Underhill 2023; Natale et al. 2017; De Corato et al. 2015; Zöttl & Yeomans
2019; Saad & Natale 2019; Bechinger et al. 2016), recent studies have begun to address
the effect of shear-thinning viscosity (Montenegro-Johnson et al. 2013; Vélez-Cordero &
Lauga 2013; Gagnon et al. 2014; Li & Ardekani 2015; Park et al. 2016; Gómez et al.
2017). A shear-thinning fluid loses its viscosity with applied shear due to changes in its
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microstructure. Such a non-Newtonian behaviour was found to impact the propulsion of
various low-Reynolds-number swimmers in qualitatively different manners (Datt et al.
2015, 2017; van Gogh et al. 2022; Qu & Breuer 2020; Demir et al. 2020; Qin et al.
2021). In particular, Datt et al. (2015) considered a general spherical squirmer model in
a shear-thinning fluid and demonstrated how shear-thinning rheology can both enhance
and hinder its propulsion, depending on specific details of the slip velocity. Interestingly,
in a latter study (Datt et al. 2017), spherical self-diffusiophoretic particles were found to
always swim slower in a shear-thinning fluid than in a Newtonian fluid for any level of
active surface coverage. This also prompts the question to what extent the conclusion of
hindered swimming continues to hold for non-spherical self-diffusiophoretic particles.
Swimmers with non-spherical shapes are commonly found in both nature and engi-

neered systems. For instance, ciliates such as Paramecium and Tetrahymena have ap-
proximately prolate spheroidal body shapes. Keller & Wu (1977) considered a spheroidal
squirmer model, which was extended by later studies to probe the effect of geometrical
shape upon ciliary locomotion (Ishimoto & Gaffney 2013; Theers et al. 2016; Poehnl et al.
2020). Furthermore, synthetic active particles of non-spherical shapes, including prolate
spheroids and general slender bodies, were also fabricated and studied experimentally and
theoretically (Champion & Mitragotri 2006; Champion et al. 2007; Glotzer & Solomon
2007; Shemi & Solomon 2018; Poehnl et al. 2020; Zhu & Zhu 2023; Katsamba et al.
2022; Poehnl & Uspal 2021; Yariv 2019). In particular, Poehnl et al. (2020) analysed the
self-diffusiophertic motion of spheroidal particles in a Newtonian fluid. However, much
less is known about these spheroidal active particles in non-Newtonian fluids. A recent
study has suggested that shear-thinning rheology can indeed enhance the propulsion of
a squirming spheroid (van Gogh et al. 2022). However, it remains unclear whether or
not a spheroidal self-diffusiophoretic particle can swim faster in a shear-thinning fluid
than in a Newtonian fluid, which was shown impossible for the spherical case (Datt et al.
2017). In this work, we fill in this knowledge gap by analysing the self-diffusiophoretic
motion of a spheroidal particle in a shear-thinning fluid. We use asymptotic analysis and
numerical simulations to reveal how shear-thinning viscosity impacts the propulsion speed
of a prolate spheroidal self-diffusiophoretic particle with different eccentricities and levels
of active surface coverage. Our results have uncovered some propulsion behaviours not
observed in the spherical case and we present symmetry considerations to help elucidate
the emergence of these new features as a combined effect of particle anisotropy and
nonlinear fluid rheology.

2. Problem formulation

2.1. Geometrical setup

We examine a prolate spheroidal particle characterised by a major axis, a, and a
minor axis, b, as illustrated in figure 1. The prolate spheroidal coordinates (τ, ζ, ϕ), where
τ ∈ [1,∞), ζ ∈ [−1, 1], and ϕ ∈ [0, 2π), are employed in this work. The prolate spheroidal
coordinates can be related to the cylindrical coordinates (r, z, ϕ) as

r = cf
√
τ2 − 1

√
1− ζ2, z = cfτζ, (2.1)

where r2 = x2 + y2, and cf =
√
a2 − b2. The surface of the spheroidal particle is given

by the equation

z2

a2
+
r2

b2
= 1, (2.2)
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eζ
eτ

ζ = ζ0 (active cap coverage)

τ = a√
a2−b2

(particle surface)

Figure 1. Geometric configuration of a spheroidal Janus particle. The model is presented in
prolate spheroidal coordinates (τ, ζ, ϕ). The coordinate grid is indicated by dashed lines, and
the basis vectors are denoted eτ and eζ . The active cap of the particle, depicted in grey, spans
from ζ = −1 to ζ0. The rest of the surface is inert.

which translates to r = b
√
1− ζ2 and z = aζ. Comparing with (2.1), the spheroidal

particle surface can be simply represented by

τ = τ0 = 1/e, (2.3)

where e = cf/a is the eccentricity. The basis vectors in the prolate spheroidal coordinates,
represented as (eτ , eζ , eϕ), are related to the basis vectors in cylindrical coordinates,
denoted as (er, ez, eϕ), in the following manner,

eτ =
cfτ

hζ
er +

cfζ

hτ
ez, eζ = −cfζ

hτ
er +

cfτ

hζ
ez. (2.4)

The metric coefficients for the prolate spheroidal coordinates are given by

hτ =
cf
√
τ2 − ζ2√
τ2 − 1

, hζ =
cf
√
τ2 − ζ2√
1− ζ2

, hϕ = cf
√
τ2 − 1

√
1− ζ2. (2.5)

On the surface of the prolate spheroidal particle, the unit normal vector pointing outwards
is given by n = eτ , and the unit tangent vector pointing upwards is given by t = eζ as
illustrated in figure 1.

2.2. Governing equations and boundary conditions

We treat the problem within the continuum framework of self-diffusiophoretic propul-
sion (Golestanian et al. 2007; Michelin & Lauga 2014), where the particle interacts
with a solute species of local concentration C. Here, we consider an axisymmetric
Janus spheroidal particle with chemically active and inert compartments, with the polar
position ζ0 specifying the active surface coverage as illustrated in figure 1. On the
active portion of the particle surface (τ = τ0, ζ ⩽ ζ0), we assume that the solute is
emitted/absorbed with a fixed-flux characterised by the activity A,

Dn · ∇C = −A, (2.6)

where D is the diffusivity, A > 0 corresponds to solute emission, and A < 0 corresponds
to the solute absorption. The activity becomes zero (A = 0) on the inert portion of
the particle surface (τ = τ0, ζ > ζ0). Under the assumption of a thin interaction layer
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(Golestanian et al. 2005, 2007; Michelin & Lauga 2014; Datt et al. 2017), the effective
slip velocity at the surface of the particle,

us =M(I − nn) ·∇C, (2.7)

is proportional to the tangential concentration gradients and the phoretic mobility M
determined by the interaction potential profile (Anderson 1989; Michelin & Lauga 2014).
In general, when the interactions are attractive, M < 0 and the slip velocity is opposite
to the concentration gradients; when the interactions are repulsive, M > 0 and the slip
velocity is along the concentration gradients. In this work, we present results for the
case where M > 0 and A > 0 without loss of generality. By symmetry and linearity,
a flipping of the sign of M or A only inverts the direction of swimming velocity in the
results presented below.
In the bulk fluid, the solute concentration is governed by an advection-diffusion

equation

∂C

∂t
+ u ·∇C = D∇2C, (2.8)

where u is the velocity of the flow, and the solute concentration in the far-field is denoted
by C∞. In the inertialess regime, the flow generated by the phoretic slip velocity is
governed by the momentum and continuity equations, respectively, as

∇ · σ = 0, ∇ · u = 0, (2.9)

where σ = −pI + T , p is the pressure, I is the identity tensor, and T is the deviatoric
stress tensor. The boundary condition for the velocity field on the particle surface in the
laboratory frame is given by

u(τ = τ0) = us(ζ) +U , (2.10)

where us is the phoretic slip velocity given by (2.7), and U = Uez is the unknown
propulsion velocity, which occurs in the z-direction by axisymmetry. The flow decays to
zero in the far field, u(τ → ∞) = 0. The system of equations is closed by enforcing the
force-free condition on the particle, ∫

S

n · σ dS = 0, (2.11)

where S denotes the particle surface.

2.3. Shear-thinning rheology

To probe the effect of shear-thinning rheology on the self-diffusiophoretic motion, we
consider here the Carreau constitutive model (Bird et al. 1987), which has been shown
effective in capturing the shear-thinning viscosity of different biological fluids (Vélez-
Cordero & Lauga 2013). In the Carreau model, the deviatoric stress is given by

T =

[
µ∞ + (µ0 − µ∞)

(
1 +

1

2
λ2γ̇ : γ̇

)n−1
2

]
γ̇; (2.12)

here µ0 and µ∞ represent, respectively, the viscosities when the shear rate is zero and
infinite, 1/λ characterizes the critical shear rate at which the non-Newtonian behaviour

becomes significant, and γ̇ = ∇u+(∇u)
T
is the strain rate tensor. For low and high shear

rates (relative to the critical shear rate), the fluid tends to behave as a Newtonian fluid
with viscosity, respectively, µ0 and µ∞. In the intermediate regime, the fluid displays a
power-fluid behaviour, with the index n < 1 characterising the degree of shear-thinning.
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2.4. Non-dimensionalisation

We non-dimensionalise the problem by scaling lengths with a, velocities with MA/D,
stresses by µ0MA/Da, and the solute concentration with Aa/D. Hereafter we consider
only dimensionless quantities and use the same symbols as their dimensional counterparts
for convenience.
We denote the solute concentration relative to the far-field solute concentration as

c = C − C∞, which satisfies the dimensionless advection-diffusion equation,

Pe

(
∂c

∂t
+ u ·∇c

)
= ∇2c. (2.13)

Here, the Péclet number Pe =MAa/D2 characterises the relative importance of advec-
tive to diffusive transport of the solute. We assume the diffusivity is high enough and
neglect the alteration in solute distribution caused by the flow from phoretic effects, the
solute concentration becomes harmonic,

∇2c = 0. (2.14)

The dimensionless boundary condition on the active portion of the particle surface (τ =
τ0, ζ ⩽ ζ0) is given by

n ·∇c = −1, (2.15)

whereas that on the inert portion (τ = τ0, ζ > ζ0) is simply

n ·∇c = 0. (2.16)

The relative solute concentration decays to zero at infinity,

c(τ → ∞) = 0. (2.17)

Given that the solute concentration is decoupled, the governing equations for the
fluid align with those presented in (2.9). The Carreau constitutive equation is rendered
dimensionless as

T = γ̇ + (1− β)

[
−1 +

(
1 +

1

2
Cu2γ̇ : γ̇

)n−1
2

]
γ̇, (2.18)

where β = µ∞/µ0, the viscosity ratio, and Cu = λMA/aD, the Carreau number, which
compares the characteristic shear rate MA/aD to the critical shear rate 1/λ.

In the laboratory frame, the dimensionless boundary condition for the velocity field
on the particle surface is given by u(τ = τ0) = us + Uez, where the slip velocity in
dimensionless form reads

us = (I − nn) ·∇c, (2.19)

and the flow decays to zero in the far-field, u(τ → ∞) = 0. In the following calculations,
we determine the unknown propulsion speed U of the spheroidal self-diffusiophretic
particle in a shear-thinning fluid.

3. Asymptotic analysis and numerical simulations

3.1. Asymptotic analysis

The solute concentration can be obtained by solving the Laplace equation (2.14) with
boundary conditions (2.15)–(2.17) in the prolate spheroidal coordinates. An analytical
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solution in form of a series is given by (Popescu et al. 2010)

c(τ, ζ) =

∞∑
n=0

ρnQn(τ)Pn(ζ), (3.1)

where Pn(ζ) and Qn(τ) are, respectively, the Legendre functions of the first and the
second kinds. As τ ⩾ τ0 > 1, the Legredre functions of the the second kind vanish when
τ → ∞, satisfying the far-field boundary condition for the relative concentration, (2.17).
By substituting the solution (3.1) into the boundary conditions at the particle surface,
(2.15)–(2.16), and employing the orthogonality of the Legendre functions, the coefficients
ρn in the series solution are determined as

ρn(τ0, ζ0) = −2n+ 1

2

1

Q′
n(τ0)τ0

√
τ20 − 1

∫ ζ0

−1

√
τ20 − ζ2Pn(ζ) dζ. (3.2)

By employing the solution (3.1) in (2.19), the resulting phoretic slip velocity at the
particle surface, us(ζ) = useζ , is given by

us(ζ) = τ0

∞∑
n=0

Bn
P 1
n(ζ)√
τ20 − ζ2

, (3.3)

where the phoretic modes are given by

Bn = −ρn(τ0, ζ0)Qn(τ0), (3.4)

and P 1
n is the associated Legendre function with order 1.

We perform an asymptotic analysis in the weakly non-Newtonian regime where the
deviation of the viscosity ratio from unity, ϵ = 1 − β, is small. We expand the physical
quantities in powers of ϵ as

{u, γ̇,σ, p,T , U} = {u0, γ̇0,σ0, p0,T0, U0}+ ϵ{u1, γ̇1,σ1, p1,T1, U1}+O(ϵ2). (3.5)

The zeroth-order problem corresponds to the Newtonian problem, where σ0 = −p0I+γ̇0,
and γ̇0 = ∇u0 + (∇u0)

T . For boundary conditions, we have u0(τ = τ0) = U0ez + useζ
on the particle surface and u0(τ → ∞) = 0 in the far-field, where us is given in (3.3).
The flow field u0 and propulsion speed U0 of this zeroth-order, Newtonian problem were
obtained in previous works (Leshansky et al. 2007; Lauga & Michelin 2016; Popescu et al.
2010; Poehnl et al. 2020), which we summarise in Appendix A.
We consider the first-order non-Newtonian correction to the Newtonian problem. To

the order of ϵ, the flow satisfies

∇ · σ1 = 0, (3.6)

∇ · u1 = 0, (3.7)

where σ1 = −p1I + T1 and the stress tensor T1 = γ̇1 + A, with

A =

[
−1 +

(
1 +

1

2
Cu2γ̇0 : γ̇0

)n−1
2

]
γ̇0. (3.8)

For boundary conditions, we have the first correction to the Newtonian propulsion
velocity, u1(τ = τ0) = U1 = U1ez, on the particle surface, and u1(τ → ∞) = 0 in
the far-field. To obtain the propulsion speed U1, we bypass detailed calculations of the
flow via a reciprocal theorem approach (Lauga 2014). By considering an auxiliary Stokes

flow due to a prolate spheroid of the same geometry translating at a velocity Û , where
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Figure 2. (a) Swimming speed of a spheroidal Janus particle U in a shear-thinning fluid relative
to its corresponding Newtonian value U0 as a function of the Carreau number for different values
of eccentricity e when the shear-thinning effect is weak (β = 0.9). The asymptotic results in
the small ϵ = 1 − β limit (lines) agree well with numerical simulations (symbols). For large
eccentricies (e.g. e = 0.9 and 0.99), the Janus particle can swim faster in a shear-thinning fluid
than in a Newtonain fluid. (b) Numerical results for strong shear-thinning effect (β = 0.1), the
qualitative behaviours remain the same, the speed variations are substantially larger. In both
(a, b), the active coverage of the particle ζ0 = 0 and the shear-thinning power law index n = 0.25.

the velocity û and stress σ̂ fields satisfy ∇ · σ̂ = 0 and ∇ · û = 0, one can form the
relation

û · (∇ · σ1) = u1 · (∇ · σ̂) = 0. (3.9)

By integrating the relation over the fluid volume V exterior to the particle surface S and
applying the divergence theorem, one can obtain∫

S

n · σ̂ · u1 dS −
∫
S

n · σ1 · û dS =

∫
V

σ1 : ∇û dV −
∫
V

σ̂ : ∇u1 dV. (3.10)

We note that due to the force-free condition at O(ϵ),
∫
S
n · σ1 dS = 0, the second integral

on the left hand side of (3.10) is given by
∫
S
n · σ1 · û dS = (

∫
S
n · σ1 dS) · Û = 0. Upon

substituting the constitutive equations for σ̂ and σ1 and applying the boundary condition
u1 = U1 on S, (3.10) simplifies to

F̂ ·U1 =

∫
V

A : ∇û dV, (3.11)

where F̂ =
∫
S
n · σ̂ dS = −8πτ−1

0

[
(τ20 + 1) coth−1 τ0 − τ0

]−1
ez is the drag on the

translating prolate spheroid in the auxiliary problem. Therefore, the first-order correction
to the phoretic speed is given in terms of a volume integral in prolate spheroidal
coordinates as

U1 = − (τ20 + 1) coth−1 τ0 − τ0
4τ20

∫ ∞

τ0

∫ 1

−1

(A : ∇û) (τ2 − ζ2) dζdτ, (3.12)

which can be evaluated with quadrature.

3.2. Numerical simulation

To extend the results beyond the weakly non-Newtonian regime considered in the
asymptotic analysis in §3.1, we develop numerical simulations based on the finite element
method (FEM) using the partial differential equation (PDE) module of the commercial
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Figure 3. (a) Swimming speed of a spheroidal Janus particle in a shear-thinning fluid with
different values of eccentricity e and active coverage ζ0. The dashed line indicates the particles
of which the swimming speed is enhanced by the shear-thinning effect. (b) Relative swimming
efficiency of a spheroidal Janus particle with different values of eccentricity and active coverage.
For all data points, Cu = 20000, β = 0.1 and n = 0.25.

package COMSOL to perform fully coupled simulations of the momentum and conti-
nuity equations (2.9) with the Carreau-Yasuda constitutive equation (2.18), and the
solute transport equation (2.14). We use an axisymmetric computational domain with
a dimensionless radius of 500 to simulate the self-propulsion of the Janus particle in an
unbounded fluid. A sufficiently large domain size is important to guarantee accuracy
due to the slow spatial decay of flows at low Reynolds numbers. The Janus particle
is modelled as a half-spheroid whose major axis coincides with the axis of symmetry.
The simulations are performed in a reference frame that is co-moving with the particle,
and the far-field velocity is equal to the negative swimming velocity determined by the
force-free condition (2.11). The computational domain is discretised by approximately
100000 − 127000 triangular elements, and the mesh is locally refined near the particle
to properly resolve the spatial variation of the viscosity. Taylor-Hood and quadratic
Lagrange elements are adopted to discretise the flow field (u, p) and the concentration
field c, respectively. It is important to note that, theoretically, there exists a discontinuous
alteration in surface activity between the active and inert compartments of the Janus
particle. However, when modelled numerically, this abrupt transition can cause significant
numerical errors, particularly at lower Cu values. To alleviate the numerical errors, we
introduce a minor smoothing transition, dependent on the mesh size, to the surface
activity in the vicinity of the discontinuity.
In addition to comparing with the asymptotic results in this work, we have validated

our numerical implementation against previous results for a spherical Janus particle in
a shear-thinning fluid (Datt et al. 2017) and a spheroidal Janus particle in a Newtonian
fluid (Popescu et al. 2010); see Appendix B for more details.

4. Results and discussion

4.1. Effect of particle eccentricity on self-diffusiophoresis in a shear-thinning fluid

In a Newtonian fluid, the dependence of the self-diffusiophoretic propulsion speed on
the particle geometry and catalyst coverage was examined in detail by previous works
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Figure 4. Swimming speed of (a) a spherical (e = 0) and (b) a spheroidal (e = 0.99)
Janus particle as a function of ζ0 with β = 0.1. Three fluids are considered: Cu = 0 (blue
downward-pointing triangle, Newtonian fluid), 500 (red upward-pointing triangle), 20000 (black
circle).

(Popescu et al. 2010; Poehnl et al. 2020). Here we investigate how shear-thinning rheology
impacts the propulsion speeds (U) relative to their corresponding Newtonian values (U0).
The special case of a spherical Janus particle was examined by Datt et al. (2017) and
shown to always swim slower in a shear-thinning fluid than in a Newtonian fluid across
a wide range of Cu. In figure 2(a), we reproduce these results by setting the eccentricity
to be zero (e = 0, black solid line and black circles): the spherical Janus particle
displays reduced propulsion speed (U/U0 < 1) as Cu increases from zero, reaching a local
minimum when Cu is around O(1), before approaching the Newtonian value again when
Cu becomes exceedingly large. We employ the spherical case as a benchmark to probe
the effect of particle geometry by varying the eccentricity from e = 0 to e = 0.99. From
spherical to moderately spheroidal particles (e.g., e = 0.6), the increased eccentricity
does not affect the qualitative features of the speed dependence on Cu.
However, for more slender spheroidal particles (e.g., e = 0.99), our results reveal

that a self-diffusiophoretic particle can also swim faster in a shear-thinning fluid than
in a Newtonian fluid (blue dotted lines and blue upward triangles), which was shown
impossible for a spherical particle (black solid line and black circles) (Datt et al. 2017).
These new behaviors are predicted by both the asymptotic results by the reciprocal
theorem (lines) and results by numerical simulations (symbols) in the weakly shear-
thinning regime (β = 0.9), which display excellent agreements as shown in figure 2(a).
We verify that these new features continue to exist beyond the weakly non-Newtonian
regime by considering a small viscosity ratio (β = 0.1) in figure 2(b), where we observe
the same qualitative behaviours but with greater magnitudes of speed enhancement and
reduction at different Cu.

4.2. Effect of active surface coverage on self-diffusiophoresis in a shear-thinning fluid

We focus in §4.1 on Janus particles with half active surface coverage (ζ0 = 0), which was
shown to maximise the self-diffusiphoretic propulsion speed of spherical and spheroidal
particles in a Newtonian fluid. Here, we examine whether this feature remains the same
or not when the fluid displays shear-thinning rheology. In figure 3(a), we display the
propulsion speed relative to its Newtonian value as a function of particle eccentricity and
active surface coverage, which varies between ζ0 = −1 (no active surface coverage) and
ζ0 = 1 (full active surface coverage). It is observed that, regardless of the active surface
coverage, the regime of enhanced propulsion (U/U0 > 1, indicated by the dashed line
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Figure 5. Swimming speed of (a) a pair of complementarily coated spherical (e = 0) and (b)
spheroidal (e = 0.99) particles in a shear-thinning fluid with active coverage ζ0 = ±0.5. The
compementarily coated spherical swimmers are propelled with the same speed, while spheroidal
swimmers break this symmetry. In both (a, b), β = 0.1 and n = 0.25.

in figure 3(a)) only occurs when the particle eccentricity goes beyond a threshold value
of approximately 0.7. In addition, the enhanced propulsion occurs for a wider range of
active surface coverage with increased particle eccentricity. For instance, among all the
values of active surface coverage examined in figure 3(a), while enhanced propulsion is
observed only in about 15% of the cases when e = 0.8, the percentage increase to more
than 60% when e = 0.99. Another interesting feature is the asymmetry in the occurrence
of enhanced propulsion with respect to the active surface coverage: the regime is not
symmetrically distributed around ζ0 but instead skewed towards the positive direction
of ζ. This observation also suggests that the specific case of half active coverage (ζ0 = 0),
which was shown to maximise self-diffusiophertic propulsion in previous works (Popescu
et al. 2010; Poehnl et al. 2020; Datt et al. 2017), may no longer be optimal for spheroidal
particles in shear-thinning fluids.
In addition to propulsion speed, efficiency is another relevant performance measure

of the swimming motion. Recent studies have investigated how the geometrical shape
of active particles influence their efficiency of swimming in a Newtonian fluid (Guo
et al. 2021; Daddi-Moussa-Ider et al. 2021). Here we adopt the widely used definition of
swimming efficiency introduced by Lighthill (1975) for low-Reynolds-number swimmers,
η = F · U/P , to characterize the efficiency of swimming in a shear-thinning fluid.
Lighthill’s efficiency compares the power dissipation of the swimmer, P =

∫
n ·σ ·u dS,

with the power required to move a particle with identical shape at the same swimming
velocity U against the drag force F . Our results show that, while speed enhancement
occurs only in a specific domain of eccentricity and active surface coverage (figure 3(a)),
the swimming efficiency in a shear-thinning fluid is consistently enhanced, η/η0 > 1,
relative to the corresponding swimming efficiency in a Newtonian fluid (η0) in the entire
domain shown in figure 3(b). Taken together, these results reveal that self-diffusiophoretic
propulsion can be enhanced both speed-wise and efficiency-wise in a shear-thinning fluid
relative to the corresponding case in a Newtonian fluid.
Next, we further examine the asymmetry observed in the enhanced propulsion speed

with respect to the active surface coverage shown in figure 3(a). We display in figure
4(a) the absolute propulsion speed of a spherical and a spheroidal particles as a function
of active surface coverage at different values of Cu. In figure 4(a), we observe that the
propulsion speed of a spherical particle is symmetric about the half surface coverage (ζ0),
which maximises the speed in both Newtonian (Cu = 0) and shear-thinning (Cu > 0)



12

reflection
symmetry

Newtonian

[us (ζ; 1) = 0, U (1) = 0]

= +

= +

[us (ζ; 1) �= 0, U (1) = 0]

⇒

⇒

U (ζ0) = U (−ζ0)

U (ζ0) = U (−ζ0)
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Figure 6. Schematics illustrating the symmetry considerations for a pair of complementarily
coated particles. The phoretic slip velocity on the surface of a particle with an active coverage
ζ0 is denoted as us(ζ; ζ0), and the corresponding propulsion speed as U(ζ0). The slip velocity
on a fully-coated spherical particle is zero everywhere due to the isotropy. Consequently, the
flow induced by the particles with active region ±ζ0 always shows a symmetry, which leads to
identical speeds. As the slip velocity on a fully-coated anisotropic particle is not zero, the flow
and the slip velocity do not have the reflection symmetry, and the particle speeds are not the
same in general. However, if the flow is Newtonian, the speeds are the same due to the linearity.

fluids. In contrast, for a spheroidal particle with e = 0.99 shown in figure 4(b), while
the aforementioned features still hold in the Newtonian limit (Cu = 0, blue downward
triangles), when the fluid is shear-thinning (e.g., Cu = 500, red upward triangles) the
variation of the propulsion becomes asymmetric about ζ0 = 0, which no longer maximises
the self-diffusiophoretic propulsion speed. Instead, the maximum propulsion speed occurs
at a positive active surface coverage (ζ0 > 0) as shown in figure 4(b), depending on
parameters measuring the shear-thinning effect including β and Cu. The emergence of
this novel feature requires the combined presence of both non-Newtonian rheology and
non-spherical geometry, which we attempt to better understand via symmetry arguments
presented in the next section.

4.3. Symmetry considerations

To examine this feature of symmetry breaking across the full range of Cu, we compare
the swimming speed of two complementarily coated particles with ζ0 = ±0.5 for the
spherical (e = 0, figure 5a) and spheroidal (e = 0.99, figure 5b) cases. For spherical
particles, figure 5(a) shows that the swimming speed of particle with ζ0 = −0.5 (blue
triangles) is identical to that with ζ0 = 0.5 (black circles) over the entire range of Cu,
despite the latter having a significantly larger active surface coverage. On the contrary,
Figure 5(b) demonstrates that the swimming speed of two complementarily coated
spheroidal particles (ζ0 = ±0.5) only approach the same value when Cu is exceedingly
small or large, where the fluid medium becomes effectively Newtonian. At intermediate
values of Cu, the spheroidal particle with ζ0 = −0.5 (blue triangles) generally exhibits
a considerably different swimming speed compared with its complementarily coated
counterpart (ζ0 = 0.5, black circles) as shown in figure 5(b).
One may understand the above feature as a combined result of symmetry breaking
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Figure 7. The slip velocity and the flow field around the particles with active region ζ0 = ±0.5,
in a shear-thinning fluid with Cu = 1, β = 0.1 and n = 0.25. The slip velocity and the flow field
around the spherical swimmers has an upside-down symmetry (a)(c), which does not appear in
those around the spheroidal swimmers (e = 0.99) (b)(d).

and nonlinear rheology as illustrated in figure 6. We denote the phoretic slip velocity on
the surface of a particle with an active coverage ζ0 as us(ζ; ζ0) and the corresponding
propulsion speed as U(ζ0). We note that in the zero-Pe limit considered here, the linearity
of the Laplace equation allows superposition in the solute concentration problem. Now,
consider a fully coated particle, the phoretic slip velocity can be decomposed into two
complementary cases, us(ζ; 1) = us(ζ;−ζ0) − us(−ζ; ζ0), as shown in figure 6 for a
spherical and a spheroidal particles. For a fully coated spherical particle, the slip velocity
is zero everywhere on the particle surface due to isotropy, us(ζ; 1) = 0. This property
leads to the result us(ζ;−ζ0) = us(−ζ; ζ0), which means that the boundary conditions on
two complementarily coated spherical particles become identical upon a reflection about
z = 0. This result is illustrated in figure 7(a) for the slip velocity of two complementarily
coated spherical particles, which consequently, upon a reflection about z = 0, generate
the same flow field as shown in figure 7(c). The identical propulsion speed of these
complementarily coated particles, U(ζ0) = U(−ζ0), is therefore a direct result of isotropy
for spherical self-diffusiophertic particles, regardless of whether the fluid is Newtonian or
non-Newtonian.
When particle eccentricity is introduced, the anisotropy implies that the slip velocity

of a fully coated spheroidal particle does not vanish everywhere on the surface of the
particle, us(ζ; 1) ̸= 0. As illustrated in figure 7(b), the boundary conditions on two com-
plementarily coated spheroidal particles therefore no longer have the reflection symmetry
about z = 0, us(ζ;−ζ0) ̸= us(−ζ; ζ0), leading to generally distinct flows surrounding the
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spheroidal particles as shown in figure 7(d). Consequently, unlike spherical particles, one
may expect two complementarily coated spheroidal particles to have distinct propulsion
speeds in general. This conclusion is largely true as shown in figure 5(b), except for the
special case when the fluid is Newtonian. For a Newtonian fluid, the linearity of the
governing equations allows the superposition of the solutions associated with the pair
of particles with complementary coatings to form the solution of a particle with full
coating (figure 6a), leading to the result, U(1) = U(ζ0) − U(−ζ0). Since U(1) = 0 for a
fully coated particle, we obtain the conclusion U(ζ0) = U(−ζ0) for a Newtonian fluid,
which holds for both spherical and spheroidal particles, despite the absence of reflection
symmetry in their slip velocities. When the fluid is non-Newtonian, the superposition
described above no longer holds, allowing the propulsion speed of two complementarily
coated spheroidal particles to be different.
To summarise, isotropy in spherical geometry alone guarantees that two complemen-

tarily coated particles propel with identical speeds, regardless of whether the fluid is
Newtonian or not. In parallel, in a Newtonian fluid the linearity of the problem alone
guarantees the same, regardless of whether the particle is spherical or not. Hence, to
propel two complementarily coated particles with different speeds, both istropy and lin-
earity need to be broken. The emergence of different speeds for a pair of complementarily
coated spheroidal particles in a shear-thinning fluid reported here, therefore, serves as a
specific example illustrating this general feature.

5. Concluding remarks

Shear-thinning viscosity is a non-Newtonian behavior that active particles often en-
counter in biological fluids. The investigation into how this ubiquitous non-Newtonian
rheology impacts the propulsion speed of active particles has garnered considerable recent
interest. In particular, previous studies have demonstrated how shear-thinning rheology
slows down spherical active particles (Datt et al. 2015, 2017). A more recent investigation
(van Gogh et al. 2022) has suggested that, by tuning the geometrical shape of a squirmer,
it is possible for a spheroidal squirmer to swim faster in a shear-thinning fluid than in a
Newtonian fluid. In this work, we have extended the analysis by van Gogh et al. (2022) on
the spheroidal squirmer model to self-diffusiophoretic particles, a major physico-chemical
propulsion mechanism of synthetic active particles. Unlike the squirmer model, where
the velocity distribution on the particle surface is prescribed, the effective slip velocity
of a self-diffusiophoretic particle is determined by the solute concentration gradient and
the phoretic mobility. Using asymptotic analysis to probe the weakly non-Newtonian
behavior, we have demonstrated that shear-thinning viscosity can indeed enhance self-
diffusiophoretic propulsion of spheroidal particles with a large particle eccentricity in a
specific regime of Carreau number. This result is in stark contrast with spherical self-
diffusiophoretic particles, which always swim slower in a shear-thinning fluid (Datt et al.
2017). We have also used numerical simulations to verify that the new features uncovered
by the asymptotic analysis continue to hold beyond the weakly non-Newtonian regime.
We have also systematically characterised the dependence of the self-diffusiophoretic

propulsion speed on the particle’s active surface coverage in a shear-thinning fluid.
Previous studies showed that a pair of complementarily coated spherical or spheroidal
particles always propel at the same speed in a Newtonian fluid. When the fluid becomes
shear-thinning, the same propulsion speed still occurs when the complementarily coated
particles are spherical in shape. However, we have found distinct propulsion speeds for
two complementarily coated spheroidal particles in a shear-thinning fluid. We have also
presented symmetry arguments to better understand how this new feature emerges as a
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combined effect of anisotropy associated with the spheroidal geometry and nonlinearity
associated with the non-Newtonian rheology. Such symmetry-breaking might hint at
using anisotropic active particles as a tool for probing microrheology of complex fluids.
We remark on several limitations of the current work and discuss potential directions

for further investigations. First, we have neglected the effect of solute advection by
considering the zero Pe limit. It remains unclear how the flow modifications due to
shear-thinning rheology influence solute advection and thereby the phoretic propulsion.
In particular, the symmetry considerations presented in Section 4.3, which require the
linearity of the Laplace equation, would no longer hold for finite Pe. It would therefore
be interesting to probe how the nonlinearity associated with solute advection affects
the symmetry breaking observed for the propulsion of complementarily coated particles.
Second, we have followed previous work (Datt et al. 2017) to focus on the non-Newtonian
effect in the bulk fluid in this work, neglecting the influence of fluid rheology on the
surface slip of a self-diffusiophretic particle, which was shown to modify the propulsion
speed of a spherical Janus particle in intriguing manners (Choudhary et al. 2020). In
particular, in a weakly shear-thinning fluid, the effect due to the modified slip velocity
could dominate the retardation due to the bulk non-Newtonian stress, leading to the
speed enhancement of a Janus spherical particle. An investigation is currently underway
to extend the analysis beyond the weakly non-Newtonian regime and examine the effect
of particle geometry in this more complex physical scenario, where the non-Newtonian
effects on both slip and mobility of self-diffusiophoretic particles are taken into account.
We also call for future efforts in developing a comprehensive physical understanding
of the findings reported in this work. Last, we focus on the effect of shear-thinning
viscosity here while complex biological fluids also display other non-Newtonian fluid
behaviors including viscoelasticity. Future work accounting for the viscoelastic stress and
its combined effects with shear-thinning rheology will shed light on how the geometric
shape of self-diffusiophretic particles should be tuned to maximize their propulsion in
biological fluids.
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Appendix A. Solution to the zeroth-order (Newtonian) problem

Here we summarise the solution to the zeroth-order problem, which corresponds to
the self-diffusiophertic motion of a spheroidal particle in a Newtonian fluid considered
in previous works (Leshansky et al. 2007; Lauga & Michelin 2016; Popescu et al. 2010;
Poehnl et al. 2020). In particular, we follow the approach by Poehnl et al. (2020) here to
determine the unknown velocity field u0 and propulsion velocity U0.
The unknown propulsion velocity U0 can be obtained using the Lorentz reciprocal

theorem (Stone & Samuel 1996; Popescu et al. 2010; Poehnl et al. 2020), by considering
an auxiliary Stokes flow problem (û, σ̂) of a translating prolate spheroidal particle of the
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same geometry along its major axis. Via the reciprocal theorem (Popescu et al. 2010;
Poehnl et al. 2020), an integral relation is obtained as

F̂ ·U0 = −
∫
S

us · (n · σ̂) dS, (A 1)

which relates the force on the translating particle in the auxiliary problem F̂ with the
unknown propulsion velocity U0 via a surface integral involving the surface velocity us.
By using the known solution to the auxiliary problem (Happel & Brenner 2012) and
simplifying the surface integral in the prolate spheroidal coordinates, the propulsion
velocity U0 = U0ez is obtained in terms of the integral (Popescu et al. 2010; Poehnl
et al. 2020)

U0 = −τ0
2

∫ 1

−1

us

√
1− ζ2√
τ20 − ζ2

dζ· (A 2)

Upon substituting the slip velocity given by (3.3), one obtain the final expression of the
propulsion speed for N phoretic modes as (Poehnl et al. 2020)

U0 =
τ20
2

N∑
n=1, odd n

Bn

∫ 1

−1

P 1
1 (ζ)P

1
n(ζ)

τ20 − ζ2
dζ· (A 3)

To determine the velocity field, we consider a streamfunction ψ0 for the axisymmetric
flow in the co-moving frame

u0 −U0 =
1

hζhϕ

∂ψ0

∂ζ
eτ − 1

hτhϕ

∂ψ0

∂τ
eζ , (A 4)

where the far-field corresponds to a uniform flow given by −U0. A general solution of
the streamfunction can be expanded in terms of products of the Gegenbauer functions
in the prolate spheroidal coordinates. For a bounded solution satisfying the far-field and
force-free condition, the streamfunction takes the form (Poehnl et al. 2020)

ψ0(τ, ζ) =

∞∑
n=2

gn(τ)Gn(ζ), (A 5)

with g2(τ) = C4H4(τ) +D2H2(τ)− 2c2U0G2(τ), g3(τ) = C3 +C5H5(τ) +D3H3(τ), and
gn(τ) = Cn+2Hn+2(τ) + CnHn−2(τ) + DnHn(τ) for n ⩾ 4, where Gn and Hn are the
Gegenbauer polynomials of the first and the second kinds, respectively. The coefficients
Cn and Dn are determined by the tangential slip velocity and the zero normal velocity
on the particle surface. If we consider a slip velocity (3.3) expansion of only N modes
and apply the boundary conditions to the stream function expansion (A 5) with only N
terms ranging from n = 2 to n = N + 1, the following system of equations is obtained

gn(τ0) = 0, for 2 ⩽ n ⩽ N + 1, (A 6)

∂gn
∂τ

∣∣∣
τ=τ0

= τ0c
2n(n− 1)Bn−1, for 2 ⩽ n ⩽ N + 1. (A 7)

These equations can be separated into a system with coefficients that only have even
indices and a system with coefficients that only have only odd indices, as all the indices
of Cn and Dn in gn are always the same parity (Poehnl et al. 2020). The odd system of
equations always has one more unknown than equation; a solve-able system of equations
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Figure 8. Validation of numerical approach against previously reported results. (a) Comparison
of the numerical results (symbols) on the swimming velocity of a spherical Janus particle as a
function of Cu for different active surface coverage ζ0 with the asymptotic solution (lines) of
the scaled first-order swimming velocity (U1/U0) obtained by Datt et al. (2017) in a weakly
shear-thinning fluid (β = 0.99). (b) Comparison of the numerical results (symbols) on the
swimming velocity U of a spheroidal Janus particle as a function of ζ0 for different eccentricities
e with the solution (lines) obtained by Popescu et al. (2010) in a Newtonian fluid. Note that
the Janus particles simulated here are coated on the bottom to maintain consistency, and
correspondingly, we set A = −1 and M = 1 in both (a, b).

is obtained by setting

CN+3−m = 0, where m =

{
1 , when N is odd

0 , when N is even
, (A 8)

for N ⩾ 2. Upon obtaining the phoretic modes Bn using (3.2) and (3.4) and using the
result given by (A 3), the system of equations (A 6)–(A 7) is solved for the coefficients
Cn and Dn for the zeroth-order velocity field. Interested readers are referred to previous
works for further details (Popescu et al. 2010; Poehnl et al. 2020).

Appendix B. Validation of numerical simulations

In this appendix, we include results on the validation of our numerical approach against
previously reported findings. First, we follow the numerical implementation described in
Section 3.2 to simulate the self-propulsion of a spherical Janus particle in a shear-thinning
fluid and compare the numerical results with the asymptotic solution obtained by Datt
et al. (2017) in the weakly nonlinear limit (β = 0.99). As shown in figure 8(a), the
results display satisfactory agreements for a wide range of Cu for different active surface
coverage, ζ0. Second, we assess the capability of our numerical approach in handling
non-spherical geometries by simulating the self-propulsion of spheroidal Janus particles
with different eccentricities in a Newtonian fluid and compare the numerical results with
the solution obtained by Popescu et al. (2010). As shown in figure 8(b), the results again
agree satisfactorily, validating our numerical implementation.

REFERENCES

Anderson, John L 1989 Colloid transport by interfacial forces. Annu. Rev. Fluid Mech. 21 (1),
61–99.

Asmolov, Evgeny S, Nizkaya, Tatiana V & Vinogradova, Olga I 2022 Self-
diffusiophoresis of janus particles that release ions. Phys. Fluids 34 (3).

Baskurt, Oguz K & Meiselman, Herbert J 2003 Blood rheology and hemodynamics. In



18

Seminars in thrombosis and hemostasis, , vol. 29, pp. 435–450. Thieme Medical Publishers,
Inc.

Bechinger, Clemens, Di Leonardo, Roberto, Löwen, Hartmut, Reichhardt, Charles,
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