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ABSTRACT

While content-based image retrieval (CBIR) has been extensively studied in natural image retrieval, its
application to medical images presents ongoing challenges, primarily due to the 3D nature of medical
images. Recent studies have shown the potential use of pre-trained vision embeddings for CBIR in the
context of radiology image retrieval. However, a benchmark for the retrieval of 3D volumetric medical
images is still lacking, hindering the ability to objectively evaluate and compare the efficiency of
proposed CBIR approaches in medical imaging. In this study, we extend previous work and establish
a benchmark for region-based and multi-organ retrieval using the TotalSegmentator dataset (TS) with
detailed multi-organ annotations. We benchmark embeddings derived from pre-trained supervised
models on medical images against embeddings derived from pre-trained unsupervised models on
non-medical images for 29 coarse and 104 detailed anatomical structures in volume and region
levels. We adopt a late interaction re-ranking method inspired by text matching for image retrieval,
comparing it against the original method proposed for volume and region retrieval achieving retrieval
recall of 1.0 for diverse anatomical regions with a wide size range. The findings and methodologies
presented in this paper provide essential insights and benchmarks for the development and evaluation
of CBIR approaches in the context of medical imaging.
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1 Introduction

In the realm of computer vision, content-based image retrieval (CBIR) has been the subject of extensive research for
several decades [[Dubey, [2021]]. CBIR systems commonly preserve low-dimensional image representations in a database
and subsequently retrieve similar images based on the distance/similarity of the image representations [Khun Jush et al.|
2023]]. Early approaches to CBIR involved manually crafting distinctive features, which led to a semantic gap, resulting
in the loss of crucial image details due to the limitations of low-dimensional feature design [Dubey}, 2021, Wang et al.,
2022]]. However, recent studies in deep learning have redirected attention towards the creation of machine-generated
discriminative feature spaces, effectively addressing and bridging this semantic gap [[Qayyum et al., 2017]]. This shift
has significantly enhanced the potential for more accurate and efficient CBIR methods [Dubey, 2021].

While natural image retrieval has been extensively researched, the application of retrieval frameworks to medical images,
particularly radiology images, presents ongoing challenges. CBIR offers numerous advantages for medical images.
Radiologists can utilize CBIR to search for similar cases, enabling them to review the history, reports, patient diagnoses,
and prognoses, thereby enhancing their decision-making process. In real-world use-cases, we often encounter huge
unannotated datasets available from different studies where the DICOM headers are removed or incorrect. Finding
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relevant images in such databases is extremely time-consuming. Moreover, the development of new tools and research
in the medical field requires trustable dataset sources and therefore a reliable method for retrieving images, making
CBIR an essential component in advancing computer-aided medical image analysis and diagnosis. The challenge with
applying CBIR to medical images lies in the fact that algorithms developed for natural images are typically designed
for 2D images, while medical images are often 3D volumes which adds a layer of complexity to the retrieval process.

Recent studies have proposed and demonstrated the potential use of pre-trained vision embeddings for CBIR in the
context of radiology image retrieval [Khun Jush et al.,[2023, |Abacha et al., 2023} Denner et al., 2024} [Truong et al.,
2023|]. However, these studies have primarily focused on 2D images [Denner et al.,[2024]] or specific pathologies or
tasks [[Abacha et al.| 2023| [Khun Jush et al.,|2023} [Truong et al., 2023]], overlooking the presence of multiple organs in
the volumetric images, which is a critical aspect of real-world scenarios. Leveraging multilabel datasets can thoroughly
evaluate the efficacy of the proposed methods, enabling a more comprehensive assessment of CBIR approaches for
radiology images. Despite previous efforts, there is still no established benchmark available for comparing methods for
the retrieval of 3D volumetric medical images. This absence of a benchmark impedes the ability to objectively evaluate
and compare the efficiency of the proposed CBIR approaches in the context of medical imaging.

Our previous work [Khun Jush et al., 2023 demonstrated the potential of utilizing pre-trained embeddings, originally
trained on natural images, for various medical image retrieval tasks using the Medical Segmentation Decathlon
Challenge (MSD) dataset [Antonelli et al.| 2022]]. The approach is outlined in Figure [I] Building upon this, the
current study extends the methodology proposed in Khun Jush et al.|[2023] to establish a benchmark for anatomical
region-based and multi-organ retrieval. While the focus of [Khun Jush et al.| [2023]] was on evaluating sampling methods
within the context of the single-organ MSD dataset [Antonelli et al} [2022], it was observed that the single-organ
labeling, hinders the evaluations for images containing multiple organs. The main objective of this study is to set
a benchmark for organ retrieval at the subvolume or region-based level, which is particularly valuable in practical
scenarios, such as when users zoom in on specific regions of interest to retrieve similar images of the precise organ
under examination. To achieve this, we evaluate a count-based method in regions using the TotalSegmentator dataset
(TS) [Wasserthal et al.,[2023]]. TS dataset along with its detailed multi-organ annotations is a valuable resource for
medical image analysis and research. This dataset provides comprehensive annotations for 104 organs or anatomical
structures, which allow us to derive fine-grained retrieval tasks and comprehensively evaluate the proposed methods.

The contribution of this work is as follows:

* We benchmarked pre-trained embeddings trained supervised on medical images against pre-trained embeddings
trained unsupervised on non-medical images for 29 modified coarse anatomical regions and 104 original
anatomical regions from TS dataset[Wang et al.| [2022].

* We adopted a late interaction re-ranking method originally used for text retrieval called CoIBERT [Khattab!
and Zaharial, 2020]] for image retrieval that takes the similarity over the whole volumes into account.

* We benchmarked the re-ranking method against the original method proposed in [Khun Jush et al.| [2023]] for
volume and region retrieval on 29 modified coarse anatomical regions and 104 original anatomical regions
from TS dataset Wang et al.| [2022].

2 Materials and Methods

2.1 Vector Database and Indexing

In the context of image search the database is where all the representations of the images, a.k.a. embeddings, and their
metadata including annotations are stored. A query allows the user or the system to request specific images in various
ways, e.g., by inputting a reference image or a textual description. The goal is to search the database for similar images
that match the query. Similarly, in this study, the search process entails comparing a query image with images in the
database to identify the most similar image using the similarity of the embeddings. Throughout this process, we do
not depend on any metadata information at any stage. Metadata-independence is an intended design choice and in
stark contrast to widely used metadata-based image retrieval solutions that frequently lack the necessary specificity in
real-world retrieval applications. In small sets, the similarity search is easy but with the growing size of the database,
the complexity increases. Accuracy and speed are the key factors in search, thus, naive approaches typically fail in huge
datasets.

Indexing in the context of content-based image search involves creating a structured system that allows for efficient
storage and retrieval of images based on their visual content. A flat index is the simplest form of indexing, where no
modification is made to the vectors before they are used for search. In flat indexing, the query vector is compared to
every other full-size vector in the database and their distances are calculated. The nearest k of the searched spaces
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Figure 1: Overview of a retrieval system based on Khun Jush et al.| [2023]]: Step 1: 2D slices are extracted from the 3D
volumes. Step 2: Feature extractors are used to extract the embeddings from the database slices and query volumes. Step
3: Database embeddings are indexed using HNSW or LSH indexing. Step 4: Search and slice retrieval is performed,
and a hit-table is saved (the hit-table shows the occurrence of volume-ids per each query volume or region saved along
with the sum of its total score). Step 5: The results from slice retrieval are aggregated to retrieve the final volume.

is then returned as the k-nearest neighbors (kNN). While this method is the most accurate, it comes at the cost of
significant search time |Aumiiller et al.|[2020]]. To improve search time, two approaches can be employed: reducing the
vector size through dimensionality reduction, e.g., by reducing the number of bits representing each vector, or reducing
the search scope by clustering or organizing vectors into tree structures based on similarity or distance. This results in
the identification of an approximation of the true nearest neighbors, known as approximate nearest neighbor search
(ANN) [[Aumiiller et al., [2020].

There are several ANN methods available. Khun Jush et al.|[2023]] compared Locality Sensitive Hashing (LSH) and
Hierarchical Navigable Small World (HNSW) for indexing and search. LSH hashes data points in a way that similar
data points are mapped to the same buckets with higher probabilities. This allows for a more efficient search for nearest
neighbors by reducing the number of candidates to be examined. HNSW [Malkov and Yashunin, 2018]] indexing
organizes data into a hierarchical graph structure where each layer of the hierarchy has a lower resolution. The top layer
connects data points directly, but the lower layers have fewer connections. The graph structure is designed to allow for
efficient navigation during the search. Compared to LSH, HNSW enables faster search and requires less memory |Taha
et al.[[2024]]. Based on findings in [Khun Jush et al., | 2023]] HSNW was chosen in this setting over LSH as the preferred
indexing method due to speed advantages at a comparable recall.

We propose a system similar toKhun Jush et al.|[2023]] and [Truong et al.|[2023]] that allows the pre-computation of the
image representations of the database. There are various index solutions available to store and search vectors. In this
study, we used the Facebook AI Similarity Search (FAISS) package that enables fast similarity search [Johnson et al.|
2019]. The indexing process involves running the feature extractors on slices of each volumetric image and storing the
output embeddings per slice. The produced representations are then added to the search index which is used later on for
vector-similarity-based retrieval.

2.2 Feature Extractors

We extend the analysis of [Khun Jush et al.|[2023]] by adding two ResNet50 embeddings and evaluating the performance
of six different slice embedding extractors for CBIR tasks. All the feature extractors are based on deep-learning-based
models.

Self-supervised Models: We employed three self-supervised models pre-trained on ImageNet [Deng et al., [2009].
DINOv1 [|Caron et al., |2021], that demonstrated learning efficient image representations from unlabeled data using
self-distillation. DINOv2 [Oquab et al.| [2023]], is built upon DINOv1 [Caron et al.l 2021]], this model scales the
pre-training process by combining an improved training dataset, patchwise objectives during training and introducing
a new regularization technique, achieving superior performance on segmentation tasks. DreamSim [Fu et al.| [2023]],
built upon the foundation of DINOv1 [Caron et al.,|2021]], fine-tunes the model using synthetic data triplets specifically
designed to be cognitively impenetrable with human judgments.

Supervised Models: We included a SwinTransformer model [Liu et al.,2021]] and a ResNet50 model [He et al., 2016]]
trained in a supervised manner using the RadImageNet dataset [Mei et al.||2022] that includes 5 million annotated CT,
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Table 1: Mapping of the original TS classes to 29 coarse anatomical regions.
Anatomical region Mapped class Anatomical region Mapped class A ical region Mapped class
adrenal gland left adrenal gland iliopsoas right iliopsoas rib right 8 rib
adrenal gland right adrenal gland inferior vena cava cardiovascular system rib right 9 rib
aorta cardiovascular system kidney left kidney sacrum sacrum
autochthon left autochthon kidney right kidney scapula left scapula
autochthon right autochthon liver liver scapula right scapula
brain brain lung lower lobe left lung small bowel small bowel
clavicula left clavicula lung lower lobe right lung spleen spleen
clavicula right clavicula lung middle lobe right lung stomach stomach
colon colon lung upper lobe left lung trachea trachea
duodenum duodenum lung upper lobe right lung urinary bladder urinary bladder
esophagus esophagus pancreas pancreas vertebrae C1 vertebrae
face face portal and splenic vein portal & splenic vein vertebrae C2 vertebrae
femur left femur pulmonary artery cardiovascular system vertebrae C3 vertebrae
femur right femur rib left 1 rib vertebrae C4 vertebrae
gallbladder gallbladder rib left 10 rib vertebrae C5 vertebrae
gluteus maximus left gluteus muscles rib left 11 rib vertebrae C6 vertebrae
gluteus maximus right gluteus muscles rib left 12 rib vertebrae C7 vertebrae
gluteus medius left gluteus muscles rib left 2 rib vertebrae L1 vertebrae
gluteus medius right gluteus muscles rib left 3 rib vertebrae L2 vertebrae
gluteus minimus left gluteus muscles rib left 4 rib vertebrae L3 vertebrae
gluteus minimus right gluteus muscles rib left 5 rib vertebrae L4 vertebrae
heart atrium left cardiovascular system rib left 6 rib vertebrae L5 vertebrae
heart atrium right cardiovascular system rib left 7 rib vertebrae T1 vertebrae
heart myocardium cardiovascular system rib left 8 rib vertebrae T10 vertebrae
heart ventricle left cardiovascular system rib left 9 rib vertebrae T11 vertebrae
heart ventricle right cardiovascular system rib right 1 rib vertebrae T12 vertebrae
hip left hip rib right 10 rib vertebrae T2 vertebrae
hip right hip rib right 11 rib vertebrae T3 vertebrae
humerus left humerus rib right 12 rib vertebrae T4 vertebrae
humerus right humerus rib right 2 rib vertebrae T5 vertebrae
iliac artery left cardiovascular system rib right 3 rib vertebrae T6 vertebrae
iliac artery right cardiovascular system rib right 4 rib vertebrae T7 vertebrae
iliac vena left cardiovascular system rib right 5 rib vertebrae T8 vertebrae
iliac vena right cardiovascular system rib right 6 rib vertebrae T9 vertebrae
iliopsoas left iliopsoas rib right 7 rib

MRI, and ultrasound images of musculoskeletal, neurologic, oncologic, gastrointestinal, endocrine, and pulmonary
pathology. Furthermore, a ResNet50 model pre-trained on rendered images of fractal geometries was included based
on [Kataoka et al., 2022]. These training images are formular-derived, non-natural, and do not require any human
annotation.

2.3 Dataset

We designed a CBIR benchmark relying on the TS dataset which is publicly available on|Wasserthal et al.|[2023]]. TS
is a dataset comprising 1204 computed tomography (CT) volumes with 104 anatomical structure annotations. Since
the anatomical regions presented in the original dataset include small structures we additionally mapped these small
regions to classes with coarse labels, e.g., all the rib classes are mapped to a single class in the coarse label classes.
The coarse label classes can provide insight into the retrieval of anatomical regions that are close to the target organ.
Table[T] shows the mapping of the TS original classes to the coarse classes. The query cases are sourced from the test
split, while the train set serves as the database for searching. The search is assessed on the retrieval rate of 29 coarse
anatomical structures and 104 original TS anatomical structures.

The models presented in Section 2.2] are 2D models used without fine-tuning to extract the embeddings. Thus, per
each 3D volume, individual 2D slices of the corresponding 3D volumes are utilized for embedding extraction. The
input size for all the used models is equal to 224 x 224 pixels with image replication along the RGB channel axis.
For all the ViT-based models and the ResNet50 trained on fractal images, images are normalized to the ImageNet
mean and standard deviation of (.485,.456,.406) and (.229, .224, .225), respectively. For the SwinTransformer and
the ResNet50 model pre-trained on the RadlmageNet dataset, the images are normalized to .5 mean and .5 standard
deviation based on Mei et al.|[2022]]. The total size of the database is 290757 embeddings, while the final query set of
the test set comprises 20442 embeddings.

2.4 Search and Retrieval

After creating the vector database, the search is performed using the embeddings extracted from slices of query volumes.
The simplest way of retrieval is to match each 2D slice with the most similar 2D slice in the database. Here, we used
cosine similarity. In Khun Jush et al.|[2023]] we introduced this method as the lower bound baseline for evaluating our
proposed aggregation and sampling schemes. Similarly, in this work, we keep the slice-wise evaluation as the lower
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Figure 2: Comparison of volume-based (a) and region-based (b) retrieval, in volume-based retrieval per each query
volume one volume is retrieved while in region-based retrieval per each anatomical structure, one volume is retrieved.

bound for the retrieval rate of our methods. We performed and evaluated image retrieval at the level of volumes and
sub-volumes or regions. The difference between volume and region-based retrieval is as follows:

2.4.1 Volume-based

For every slice within the query volume, the system retrieves the most similar slice from the database. Subsequently, the
corresponding volume-id and its similarity score for each retrieved slice are stored in a hit-table similar to the hit-table
shown in Figure[T] The aggregation method in[Khun Jush et al| [2023] is a count-based method that retrieves per query
volume the volume that has the most number of similar slices from the database Figure m Abacha et al.|[2023]] refers to
this method as the evaluation based on frequency. For every retrieved slice, its corresponding volume-id is saved in the
hit-table. The occurrence of volume-ids is then counted per each query volume. The volume with the highest count is
selected as the most similar retrieved volume. Evaluation is then carried out based on the aggregated labels of the query
volume and the most similar retrieved volume. This method retrieves the most similar volume per query volume. An
overview is shown in Figure 23]

2.4.2 Region-based

The hit-table is generated following the process outlined in Section[2:4.T| with the same aggregation method. The key
distinction lies in the fact that the subsequent retrieved volumes and final evaluation are predicated upon sub-volumes
or anatomical regions. Meaning, that the occurrence of volume-ids is counted per each query region. The volumes
with the highest count are selected as the most similar retrieved volumes. This means that in contrast to volume-based
retrieval when all organs are under examination, multiple volumes are retrieved for each query volume. Naturally, only
one organ can be searched (by querying only the slices that contain the limited organ view). The overview of this
method is depicted in Figure 2b]
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Figure 3: Overview of re-ranking: Step 1: Filtering based on at least one similar slice leads to the selection of candidate
volumes Step 2: followed by similarity score computation using dot product on the normalized embedding matrices.
Step 3: The final step involves max-pooling and summation to determine the top-scoring volumes for retrieval.

2.5 Re-ranking

Re-ranking in information retrieval involves the process of re-ordering the initially retrieved results to better align with
the user’s information needs. This can be achieved through different methods such as relevance feedback, learning to
rank algorithms, or incorporating contextual information [Ai et al., 2018], |Guo et al., 2020, [MacAvaney et al.,2019].
Relevance feedback allows users to provide input on the initial results, which is then used to adjust the ranking [Ai et al.|
2018]). Learning to rank algorithms utilize machine learning techniques to re-rank results based on relevant features
[Guo et al., |2020]. Additionally, re-ranking methods may also consider contextual information such as user behavior,
temporal relevance, or other relevant factors to better reflect the user’s current information needs, ultimately enhancing
the overall quality of retrieved results [MacAvaney et al., [2019]]. A method based on contextualized information
proposed in |Khattab and Zaharia) [2020] called ColBERT (Contextualized Late Interaction over BERT). ColBERT
operates by generating contextualized representations of the query and the documents using BERT [Devlin et al., 2018]].
In this method, queries and documents are encoded into more detailed multi-vector representations, and relevance is
gauged through comprehensive yet scalable interactions between these sets of vectors. ColBERT creates an embedding
for each token in the query and document, and it measures relevance as the total of maximum similarities between each
query vector and all vectors within the document [Santhanam et al.,|2021]]. This late interaction approach allows for a
more refined and contextually aware retrieval process, thereby enhancing the quality of information retrieval.

Inspired by ColBERT we introduce a method in which filtering of the search space is performed and the total similarity
of the entire target volume is considered to re-rank and score the retrieved volumes. To create an analogy to the
ColBERT method each word can be considered as one slice and each passage of the database or each question of the
query can be considered as one volume. Instead of the BERT encoder for the image retrieval task, the pre-trained vision
models can be used to create the embeddings as discussed in Section [2.2]

An overview of the proposed method is shown in Figure 3] The method consists of the following steps:
2.5.1 Step 1: Filtering
In the first step per each slice query, top k’ retrieval in the indexed space is performed based on cosine, L2 similarity,

etc. In this step all the embedding are saved as vectors, one per each slice both for the query and the database. For each
volume, that contained N, slices, maximum N, x k’ volumes are retrieved. Thus, for V' query volumes or regions,
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in total maximum N, x k' x V volumes are filtered. In the filtered volumes there is at least one slice that has a high
similarity with its corresponding query volume or region. all the following operations are performed on the subsection
of the filtered volumes and the re-ranking will be performed only on the filtered volumes.

2.5.2 Step 2: Similarity Score on Embedding Matrix

In this step, volumes are treated as matrices, where for each query V, there is a matrix of multiple embeddings. If
the embeddings per slice have size L and NN, is the number of slices the loaded query matrix My, has size Nq x L.
Similarly, there is a matrix of multiple embeddings for each volume in the database. In this step, all the embeddings
should be normalized such that the L2 norm is equal to 1. The result is that the dot-product of any two embeddings
will be equivalent to their cosine similarity. The dot product of each query embedding matrix with size Ng x L to an
embedding matrix of a volume in the database of size M, x L results in a similarity score matrix of size Ny X M,
where x = 1,2, ... denoting volume-id number.

2.5.3 Step 3: Final Score and Re-ranking

To compute the score of each volume, its dimension across the volume is reduced via max-pooling (i.e. representing the
most similar slice in the target volume for each query slice). Across the query dimension, a summation is performed (i.e.
representing the total score of the similarity of all the slices of the query to the whole volume in the database). Finally,
the k” documents are sorted by their total scores, and the volume/volumes with the maximum overall score are retrieved.

3 Evaluation

In this section, we evaluate the retrieval recall of the methods explained in Section[2.4]and Section[2.5] Since finding
extra anatomical regions is not critical for this study (that would be the anatomical regions that are present in the
retrieved volume/slice and are missing from the query volume/slice, i.e. false positives (FP)) we do not discuss the
precision metric. The results are presented for 29 anatomical structures presented in Table [T] and 104 anatomical
structures that were originally presented in Wasserthal et al.[[2023]). In the tables presented in this section, the average
and standard deviation (STD) columns are aimed to highlight difficult classes across models (low average) and the ones
that have higher variations among models (higher STD). The average and STD rows show the average and STD over all
the classes for each model.

3.1 Search and Retrieval
3.1.1 Slice-wise

In the computation of slice-wise recall, per each slice, if the retrieved slice contains the same anatomical region/regions
the corresponding class/classes are considered as the true positive class (TP). If the query slice contains anatomical
regions that are not present in the retrieved slice that class is considered a false negative (FN).

Table|2|and Table 3| show the retrieval recall of 29 coarse anatomical regions and 104 original TS anatomical regions,
respectively, using the slice-wise method (lower bound).

In slice-wise retrieval, DreamSim is the best-performing model with retrieval recall of .849 £ .148 and .797 + .129
for coarse and original TS classes, respectively. ResNet50 pre-trained on fractal images has the lowest retrieval recall
almost on every anatomical region for 29 and 104 classes. This is however expected due to the nature of synthetic
generated images.

In Table [3]the gallbladder has the lowest retrieval rate followed by vertebrae C4 and C5 (see average column). However,
in Table [2|the vertebrae class shows a higher recall which indicated that the vertebrae classes were detected but the
exact location, i.e. C4 or C5 were mismatched. The same pattern can be observed in rib classes.
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Table 2: Slice-wise recall of coarse anatomical regions (29 classes) using HNSW Indexing. In each row, bold numbers
represent the best-performing values, while italicized numbers indicate the worst-performing. The separate average
and standard deviation (STD) columns are color-coded, with blue indicating the best-performing values and yellow
indicating the worst-performing values across different models. Additionally, bold numbers in colored columns represent
the best classes in terms of average and standard deviation, while italicized values represent the worst-performing class
across the models.

Model DINOv1 DINOv2 DreamSim SwinTrans. ResNet50
Dataset (pre-trained) (ImgNet) (ImgNet) (ImgNet) (RadImg) (Fractaldb) (RadImg) Average STD
adrenal gland 749 .639 071 614 490 557 .620 .090
autochthon 980 974 979 976 941 965 969 .015
brain .852 .843 901 .894 .850 .863 867 .025
cardiovascular system 978 974 979 970 941 953 966 .015
clavicula .886 .884 .898 857 .632 873 .838 102
colon 932 931 945 912 .830 905 909 .042
duodenum .678 .682 719 .697 .605 733 .686 .045
esophagus 934 934 936 933 .870 894 917 .028
face .854 .840 872 788 .692 733 797 072
femur 927 907 953 914 778 .860 .890 .063
gallbladder .246 .345 312 341 347 400 332 .051
luteus muscles .964 940 978 950 879 915 938 .036
ip 959 928 974 941 .880 907 931 .034
humerus 575 .600 .633 .598 351 523 .547 102
iliopsoas 950 933 957 934 .863 923 927 .034
kidney 759 771 791 776 641 776 752 .055
liver .840 817 844 841 814 839 833 .013
lung 953 930 958 940 .890 .898 928 .028
pancreas 720 .685 779 734 552 722 .699 078
portal and splenic vein 731 627 .679 .658 522 584 .634 074
rib .950 942 951 948 .900 933 937 .020
sacrum .894 .865 907 .878 .805 856 867 .036
scapula 935 913 924 891 793 869 887 .052
small bowel .896 .872 900 .894 783 892 873 .045
spleen 774 719 735 .699 731 .693 125 .029
stomach 811 781 844 778 741 752 784 .038
trachea .893 .862 903 .863 762 816 850 .053
urinary bladder 720 .643 722 720 .633 .666 .684 .041
vertebrae 981 967 977 969 .950 964 968 011
Average 855 832 363 837 757 813
STD 108 118 107 114 152 124

Table 3: Slice-wise recall of all TS anatomical regions (104 classes) using HNSW Indexing. In each row, bold numbers
represent the best-performing values, while italicized numbers indicate the worst-performing. The separate average
and standard deviation (STD) columns are color-coded, with blue indicating the best-performing values and yellow
indicating the worst-performing values across different models. Additionally, bold numbers in colored columns represent
the best classes in terms of average and standard deviation, while italicized values represent the worst-performing class
across the models.

Model DINOvI DINOv2 DreamSim SwinTrans. ResNet50
Dataset (pre-trained) (ImgNet) (ImgNet) (ImgNet) (RadImg) (Fractaldb) (RadImg) Average STD
adrenal gland Teft .636 524 573 539 40 453 522 082
adrenal gland right .644 515 .593 551 408 521 .539 .080
aorta 954 941 .946 952 915 926 939 015
autochthon left 981 972 .980 974 942 966 969 .014
autochthon right 980 974 979 976 942 965 969 .014
brain .852 843 901 .894 .850 863 867 025
clavicula left .866 .875 .886 .864 .636 874 .833 .097
clavicula right .862 871 867 .840 614 855 818 101
colon 932 931 945 912 .830 905 909 042
duodenum .678 .682 719 .697 .605 733 .686 .045
esophagus 934 934 936 933 .870 .894 917 028
face .854 .840 872 788 .692 733 797 072
femur left .920 902 940 .909 773 .855 .883 .061
femur right 931 910 952 938 .808 915 909 .052
gallbladder .246 345 312 341 347 .400 332 051
gluteus maximus left 937 914 951 927 845 .903 913 .037
gluteus maximus right 942 914 945 925 858 900 914 .032
gluteus medius left .930 .878 948 920 .824 .883 .897 .045
gluteus medius ri§ht 922 .892 951 923 .852 .893 905 .034
gluteus minimus left .872 .824 894 855 795 .876 .853 .037
Eluteus minimus right .876 811 .878 .874 .819 .898 .860 .035
eart atrium left 709 .656 .800 .680 .588 542 .663 .091
heart atrium right 793 762 870 73 .684 .668 758 .074
heart myocardium 798 757 844 .808 715 733 776 .049
heart ventricle left 778 724 824 788 .699 720 756 .048
heart ventricle right .802 .801 851 822 723 738 789 .049
hip left 959 928 971 937 .880 905 930 .034
hip right .963 932 977 948 .889 916 938 .032
humerus left 525 571 591 577 313 471 .508 105
humerus right .593 .625 627 567 314 .529 .543 118
iliac artery left .882 .863 902 .893 813 841 .866 .034
iliac artery right .905 .869 918 .895 822 851 .876 .036
iliac vena left .903 .868 908 .893 825 857 .876 .032
iliac vena right 910 .870 923 .891 831 873 .883 .033
iliopsoas left .950 929 958 932 .861 924 926 .034
iliopsoas right 947 .929 951 932 .854 922 923 .035
inferior vena cava 928 .896 922 923 841 .893 901 .033
kidney left 719 708 762 747 .600 762 716 .061
kidney right .708 124 155 737 .602 756 714 .058
liver .840 817 844 .841 814 .839 .833 013
lung lower lobe left .903 .885 908 887 .826 811 .870 .041
lung lower lobe right .903 .880 914 897 .806 .809 .868 048
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lung middle lobe right .800 785 818 794 726 .699 770 .047
lung upper lobe left 917 909 921 906 .850 875 .896 .028
lung upper lobe right 928 .883 919 .885 818 .848 .880 .042
pancreas 720 .685 779 134 552 722 .699 .078
portal and splenic vein 731 .627 679 .658 522 584 634 074
pulmonary artery 819 11 773 .679 526 .563 .679 115
rib left 1 .855 .824 867 .851 .669 .821 815 .073
rib left 10 827 175 .803 .823 742 747 786 .037
rib left 11 173 767 785 788 .694 756 761 .034
rib left 12 .594 .568 682 .620 481 576 587 .066
rib left 2 .841 .804 858 .807 .681 .803 799 .062
rib left 3 832 .803 .808 .805 .728 789 794 .035
rib left 4 .820 783 .809 776 738 759 781 .031
rib left 5 789 786 805 784 .699 723 764 .043
rib left 6 815 787 797 787 .706 51 774 .039
rib left 7 .830 .825 834 .829 734 778 .805 .040
rib left 8 .810 799 850 .831 745 77 .802 .038
rib left 9 .826 .803 .833 853 737 .780 .805 .042
rib right 1 852 .820 .828 .831 672 .827 .805 .066
rib right 10 827 768 .804 814 728 747 781 .040
rib right 11 770 763 798 771 681 742 754 .040
rib right 12 577 .570 619 634 456 .556 .569 .063
rib right 2 .839 .820 .840 815 .680 .802 799 .060
rib right 3 850 794 .826 795 725 780 795 .043
rib right 4 834 790 .809 770 .738 753 782 .036
rib right 5 .802 791 810 776 .709 718 768 .044
rib right 6 .810 788 172 779 709 741 766 .036
rib right 7 .803 813 .805 817 731 765 789 .034
rib right 8 814 792 847 .833 754 778 .803 .035
rib right 9 .823 793 813 844 738 776 798 .038
sacrum .894 .865 907 878 .805 .856 867 .036
scapula left 922 .891 908 .891 .798 .884 882 .044
scapula right 930 .905 919 .884 .799 .872 .885 .047
small bowel .896 .872 900 .894 .783 .892 .873 .045
spleen 774 719 735 .699 731 .693 725 .029
stomach 811 781 844 778 741 752 784 .038
trachea .893 .862 903 .863 762 816 .850 .053
urinary bladder 720 .643 722 720 633 .666 .684 041
vertebrae C1 .555 571 655 592 .399 592 .561 .086
vertebrae C2 744 613 812 594 .529 .643 .656 .104
vertebrae C3 677 .566 .586 414 271 359 479 55
vertebrae C4 427 377 519 488 323 .308 407 .087
vertebrae C5 S13 444 572 565 .330 .366 465 102
vertebrae C6 562 562 536 423 220 445 458 131
vertebrae C7 712 .645 .685 576 375 .580 .595 121
vertebrae L1 .620 .561 662 653 452 .540 582 .080
vertebrae L2 .555 514 658 587 411 591 553 .084
vertebrae L3 747 533 .608 593 503 629 .602 .086
vertebrae L4 612 449 639 .693 .523 572 581 .087
vertebrae L5 732 592 748 714 .606 .631 670 .069
vertebrae T1 723 .698 704 .689 464 694 662 .098
vertebrae T10 .568 517 583 565 449 518 533 .050
vertebrae T11 .555 .539 574 .546 433 .506 526 051
vertebrae T12 .556 .554 .604 581 468 .562 .554 .047
vertebrae T2 750 .670 752 726 .563 679 .690 071
vertebrae T3 794 744 814 736 621 668 729 .073
vertebrae T4 742 715 713 .666 .540 666 674 072
vertebrae T5 .647 618 701 627 513 .550 .609 .068
vertebrae T6 .696 627 637 597 488 514 593 .079
vertebrae T7 703 .680 705 613 .460 516 613 .104
vertebrae T8 .595 .590 728 564 450 469 .566 .101
vertebrae T9 .603 .540 660 .609 515 .524 575 .057
Average 784 750 97 765 .659 726

STD 137 144 129 140 172 154

3.1.2 Volume-based

This section presents the recall of volume-based retrieval explained in Section [2.4.1] An overview of the evaluation
is shown in Figure [2a] In volume-based retrieval, per each query volume, one volume is retrieved. In the recall
computation, the classes present in both the query and the retrieved volume are considered TP classes. The classes that
are present in the query volume and are missing from the retrieved volume are considered FN.

Table [] and Table 5] present the retrieval recall of the volume-based method on 29 and 104 classes, respectively.
The overall recall rates are increased compared slice-wise which is expected due to the aggregation and effects of
neighboring slices.

Table [d] shows that ResNet50 trained on RadImageNet outperforms other methods with an average recall of .952 £ .043.
However, in Table[5] DINOv1 outperforms all models including ResNet50 with an average recall of .923 + .077. This
shows that the embeddings of finer classes are retrieved and assigned to a different similar class by ResNet50, thus, the
performance from fine to coarse classes is improved. Whereas, all the self-supervised methods in Table 5] outperform
the supervised methods. Although some models perform slightly better than others based on looking at isolated classes,
overall models perform on par.
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Table 4: Volume-based retrieval recall of coarse anatomical regions (29 classes) using HNSW Indexing. In each
row, bold numbers represent the best-performing values, while italicized numbers indicate the worst-performing. The
separate average and standard deviation (STD) columns are color-coded, with blue indicating the best-performing values
and yellow indicating the worst-performing values across different models. Additionally, bold numbers in colored
columns represent the best classes in terms of average and standard deviation, while italicized values represent the
worst-performing class across the models.

Model DINOv1 DINOv2 DreamSim _ SwinTrans. ResNet50
Dataset (pre-trained) (ImgNet) (ImgNet) (ImgNet) (RadImg) (Fractaldb) (RadImg) Average STD
adrenal gland 1.000 960 .960 960 .980 .980 973 .0I6
autochthon 985 .969 969 985 985 1.000 982 .012
brain 692 769 769 846 769 846 782 .058
cardiovascular system 1.000 1.000 968 1.000 1.000 .968 989 .016
clavicula 949 949 949 897 .821 949 919 .052
colon 1.000 943 981 943 1.000 962 972 .026
duodenum .940 .860 900 920 980 920 920 .040
esophagus 964 964 946 982 946 1.000 967 021
face 765 765 .706 .706 .706 .882 755 .069
femur .933 .933 911 911 956 933 930 .017
gallbladder .846 795 872 821 .846 897 .846 .036
luteus muscles 1.000 977 977 977 1.000 .955 981 .017
ip 1.000 971 977 977 1.000 .955 981 .017
humerus .898 .857 980 .898 878 878 .898 .043
iliopsoas 981 981 962 .962 981 .962 972 010
kidney .945 927 945 .891 927 964 933 .025
liver 964 945 982 945 982 982 967 .018
lung 983 983 931 983 983 983 974 .021
pancreas 940 .920 .920 .940 .960 980 943 .023
portal and splenic vein 980 .960 940 980 960 980 967 .016
rib 983 983 949 1.000 966 1.000 980 .020
sacrum 977 955 977 955 1.000 955 970 .019
scapula 909 909 909 818 .886 .886 .886 .035
small bowel 958 .896 917 958 979 938 941 .031
spleen 1.000 .980 .960 980 980 1.000 .983 .015
stomach 1.000 .980 961 980 980 1.000 984 .015
trachea 951 951 951 878 .805 902 907 .059
urinary bladder 1.000 977 977 953 977 953 973 018
vertebrae .984 .969 1.000 984 1.000 1.000 990 .013
Average .949 932 936 932 939 952
STD 072 064 063 .067 078 043

Table 5: Volume-based retrieval recall of all TS anatomical regions (104 classes) using HNSW Indexing. In each
row, bold numbers represent the best-performing values, while italicized numbers indicate the worst-performing. The
separate average and standard deviation (STD) columns are color-coded, with blue indicating the best-performing values
and yellow indicating the worst-performing values across different models. Additionally, bold numbers in colored
columns represent the best classes in terms of average and standard deviation, while italicized values represent the
worst-performing class across the models.

Model DINOv1 DINOv2 DreamSim __ SwinTrans. ResNet50
Dataset (pre-trained) ([mgglet) (ImgNeft) (ImgNeft) (RadImg) (Fractaldb) (RadImg) Average STD
adrenal gland Teft 960 900 920 900 900 960 3 J
adrenal gland right 980 .900 .940 .900 .900 .960 930 .035
aorta 984 934 .934 934 918 .934 940 .022
autochthon left 969 923 938 923 908 954 936 .023
autochthon right 969 923 938 923 908 954 936 .023
brain .692 .692 .692 .692 769 .692 705 .031
clavicula left 949 923 .897 .821 .821 .897 885 .053
clavicula right 974 947 921 816 .816 .895 .895 .067
colon 981 .906 962 .906 .906 925 931 .033
duodenum 920 .820 .880 .880 .880 .880 877 .032
esophagus .946 911 911 911 875 964 920 .031
face 765 706 .647 388 706 765 .696 .069
femur left 911 911 .889 .867 .867 911 .893 .022
femur right 927 927 .902 .902 927 927 919 013
gallbladder .846 744 .846 795 795 872 .816 .047
gluteus maximus left 977 953 953 907 930 930 942 .024
gluteus maximus right 977 953 930 930 .907 930 938 .024
gluteus medius left 977 932 955 .909 909 932 936 .027
gluteus medius right 977 930 953 930 .907 953 942 .024
gluteus minimus left 977 953 953 .907 930 .930 942 .024
ﬁluteus minimus right 976 952 952 .905 929 952 944 .025
eart atrium left 915 .830 872 936 .830 979 894 .060
heart atrium right 939 .898 .898 939 816 980 912 .056
heart myocardium 939 .898 .898 .939 816 980 912 .056
heart ventricle left 939 .898 878 939 .816 980 908 .057
heart ventricle right 939 .898 .898 .939 816 980 912 .056
hip left 977 932 955 932 909 932 939 .023
hip right 977 932 955 932 .886 932 936 .030
humerus left 949 .897 949 872 .846 .897 902 .041
humerus right .875 .854 917 .833 .833 813 854 .037
iliac artery left 977 932 955 932 .909 955 943 .024
iliac artery right 955 .909 932 .909 .886 932 920 .024
iliac vena left 977 932 955 932 909 932 939 .023
iliac vena right 955 .909 932 .909 .886 932 920 .024
iliopsoas left 943 887 925 925 .906 925 918 .019
iliopsoas right 961 922 941 922 .902 941 931 .021
inferior vena cava 982 .930 .965 930 912 965 947 .027
kidney left .906 .887 .906 .849 .868 943 .893 .033
kidney right 900 .820 .880 .860 .820 900 .863 .037
liver 945 909 964 909 .891 945 927 .028
lung lower lobe left 912 877 .842 .895 .895 912 .889 .026
lung lower lobe right 946 911 875 .893 875 929 905 .029
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lung middle lobe right .939 918 .878 959 .837 980 918 .053
lung upper lobe left 929 911 911 911 .839 946 908 .036
lung upper lobe right .891 .870 .870 .804 891 .870 .866 .032
pancreas .920 .880 .900 .900 .900 960 910 .028
portal and splenic vein 960 920 920 940 .880 960 930 .030
pulmonary artery 850 .825 850 .750 .800 .800 813 .038
rib left 1 974 947 921 .842 816 .895 .899 .061
rib left 10 .961 922 .922 .941 .882 980 935 .034
rib left 11 961 922 .922 941 .882 980 935 .034
rib left 12 .896 938 .896 917 875 958 913 .031
rib left 2 950 950 .925 .825 .825 .875 .892 .058
rib left 3 951 927 927 .829 .854 .878 .894 .048
rib left 4 900 .875 900 .825 .850 .875 871 .029
rib left 5 909 841 .864 .864 841 909 871 .031
rib left 6 .880 .840 .860 .940 .820 960 .883 .056
rib left 7 .959 918 918 959 .857 980 932 .044
rib left 8 .961 922 .922 .961 .882 980 938 .036
rib left 9 961 922 .922 .961 .902 980 941 .030
rib right 1 974 .947 921 .842 842 .895 .904 .054
rib right 10 961 922 922 941 .882 980 935 .034
rib right 11 961 922 922 941 .882 980 935 .034
rib right 12 872 915 .872 .936 .830 957 .897 .047
rib right 2 974 .949 923 .846 .846 .897 906 .053
rib right 3 927 902 .902 .805 .854 .854 874 .045
rib right 4 927 .902 .878 .829 .854 .854 .874 .036
rib right 5 932 841 .864 .864 .864 .886 875 .031
rib right 6 918 .857 .857 918 .796 918 878 .050
rib right 7 959 918 918 .959 .816 980 925 .059
rib right 8 961 922 922 961 .882 980 938 .036
rib right 9 941 .902 .902 941 .902 961 925 .026
sacrum 955 909 955 909 909 932 .928 .022
scapula left 902 .878 902 .780 .854 .854 .862 .045
scapula right 930 .884 .884 767 .860 .860 .864 .054
small bowel 938 854 .896 917 .896 .896 .899 .028
spleen 980 .940 .940 .940 .900 980 947 .030
stomach 980 941 941 941 1902 .980 948 .030
trachea 951 927 .902 .805 .805 .854 .874 .063
urinary bladder 977 953 953 907 .907 930 938 .028
vertebrae C1 643 643 643 .643 714 643 .655 .029
vertebrae C2 .692 .692 .692 .692 769 .692 705 .031
vertebrae C3 .643 714 571 714 857 714 702 .095
vertebrae C4 .600 667 533 .667 867 667 667 112
vertebrae C5 .650 .600 .600 .500 700 .600 .608 .066
vertebrae C6 818 758 788 758 .606 .636 727 .086
vertebrae C7 972 .944 917 .833 .806 .861 .889 .066
vertebrae L1 959 918 918 918 .878 959 925 .031
vertebrae L.2 .909 .886 .909 .886 .886 977 909 .035
vertebrae L3 932 .841 932 .886 818 955 .894 .055
vertebrae L4 955 .864 .955 .909 .909 977 928 .042
vertebrae LS 953 .884 953 .907 .907 953 926 .031
vertebrae T1 973 .946 919 .838 811 .892 .896 .063
vertebrae T10 918 .898 918 918 837 980 912 .046
vertebrae T11 958 917 917 938 875 979 931 .036
vertebrae T12 .960 .900 .920 920 .900 980 930 .033
vertebrae T2 974 .947 921 .842 .816 .895 .899 .061
vertebrae T3 947 921 .895 .816 .816 .868 877 .054
vertebrae T4 949 949 923 821 821 872 .889 .060
vertebrae TS 949 923 .872 .821 .821 .821 .868 .057
vertebrae T6 944 944 917 .833 .833 .889 .894 .051
vertebrae T7 872 .821 .846 .821 .821 .846 .838 .021
vertebrae T8 .867 .800 .822 .844 .822 .889 .841 .033
vertebrae T9 .878 .857 .857 .898 .796 939 871 .048
Average 923 887 892 873 .856 908

STD .077 .071 .080 .082 054 .081

3.1.3 Region-based

This section presents the recall of region-based retrieval. An overview of the evaluation is shown in Figure[2b] In region-
based retrieval, per each anatomical region in the query volume, one volume is retrieved. In the recall computation, the
classes present in both the sub-volume of the query and the corresponding retrieved volume are considered TP classes.
The classes that are present in the query sub-volume and are missing from the retrieved volume are considered FN.

Table [6] and Table [7] present the retrieval recalls. Compared to volume-based retrieval the average retrieval for the
regions is higher. The performance of the models is very close. DreamSim performs slightly better with an average
recall of .979 £ .037 for coarse anatomical regions and .983 £ .032 for 104 anatomical regions. The retrieval recall for
many classes is 1.0. The standard deviation among classes and the models is low, with the highest standard deviation of
.05 and .092, respectively.
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Table 6: Region-based retrieval recall of coarse anatomical regions (29 classes) using HNSW Indexing. In each row,
bold numbers represent the best-performing values, while italicized numbers indicate the worst-performing. The
separate average and standard deviation (STD) columns are color-coded, with blue indicating the best-performing values
and yellow indicating the worst-performing values across different models. Additionally, bold numbers in colored
columns represent the best classes in terms of average and standard deviation, while italicized values represent the
worst-performing class across the models.

Model DINOv1 DINOv2 DreamSim SwinTrans. ResNet50
Dataset (pre-trained) (ImgNet) (ImgNet) (ImgNet) (RadImg) (Fractaldb) (RadImg) Average STD
adrenal gland 1.000 1.000 1.000 .970 .990 1. .993 012
autochthon 992 992 .992 .992 .992 1992 992 000
brain .846 .846 1.000 923 1.000 1.000 936 .076
cardiovascular system 1.000 1.000 1.000 1.000 1.000 1.000 1.000 000
clavicula 987 987 1.000 1.000 961 987 987 014
colon 1.000 1.000 1.000 1.000 1.000 1.000 1.000 000
duodenum 1.000 1.000 979 958 958 1.000 983 .020
esophagus 1.000 1.000 1.000 1.000 1.000 982 997 .007
face .882 882 .824 .824 882 824 853 .032
femur 977 977 977 977 977 953 973 .009
gallbladder 821 795 .897 .846 923 872 .859 .048
luteus muscles 1.000 1.000 1.000 992 1.000 984 996 .006
ip 1.000 1.000 1.000 1.000 1.000 989 998 .005
humerus 931 931 977 966 .897 977 .946 .032
iliopsoas 980 990 990 .980 .980 990 985 .005
kidney 1.000 1.000 980 971 941 1.000 982 024
liver 1.000 1.000 982 982 945 982 982 .020
lung 1.000 1.000 .992 1.000 1.000 1.000 999 .003
pancreas 1.000 1.000 .980 .980 .980 1.000 990 011
portal and splenic vein .980 .980 .980 .980 .980 .980 .980 .000
rib 998 997 .996 1.000 1.000 1.000 999 .002
sacrum 1.000 1.000 1.000 977 1.000 977 .992 012
scapula 964 964 .952 964 1.000 .988 972 .018
small bowel 979 958 979 958 938 958 962 016
spleen 1.000 1.000 .960 1.000 980 980 987 016
stomach 1.000 1.000 .980 1.000 1.000 1.000 997 .008
trachea 1.000 1.000 1.000 1.000 1.000 .976 996 .010
urinary bladder 1.000 1.000 977 977 977 977 984 012
vertebrae 1.000 999 1.000 997 .998 .994 998 .002
Average 977 976 979 973 976 978
STD .047 .051 .037 .042 033 .039

Table 7: Regiond-based retrieval recall of all TS anatomical regions (104 classes) using HNSW Indexing. In each
row, bold numbers represent the best-performing values, while italicized numbers indicate the worst-performing. The
separate average and standard deviation (STD) columns are color-coded, with blue indicating the best-performing values
and yellow indicating the worst-performing values across different models. Additionally, bold numbers in colored
columns represent the best classes in terms of average and standard deviation, while italicized values represent the
worst-performing class across the models.

glodel : o (I?IN(I\)IVI) (I?IN(I\)IVZ) D(Ireanl{ISir)n S(\Ki%"ll"ranj%. " Il(}g;NelS(g - A STD
afaset (pre-traine mgNet mgNet mgNet adlmg ractal adlmg verage
adrenal gland Teft .9%0 1.%0'0 1.%0'0 940 1.000 1. 987 024
adrenal gland right 1.000 1.000 1.000 .980 .960 1.000 990 .017
aorta 1.000 1.000 1.000 .984 1.000 1.000 997 .007
autochthon left 1.000 1.000 1.000 985 1.000 985 995 .008
autochthon right 985 985 985 985 985 1.000 987 .006
brain .846 .846 1.000 923 1.000 1.000 936 .076
clavicula left 974 974 1.000 1.000 974 974 983 .013
clavicula right 1.000 1.000 1.000 974 .947 1.000 987 .022
colon 1.000 1.000 1.000 1.000 1.000 1.000 1.000 .000
duodenum 1.000 1.000 .979 958 958 1.000 983 .020
esophagus 1.000 1.000 1.000 1.000 1.000 982 997 .007
face 882 882 .824 .824 882 .824 .853 .032
femur left 978 .956 956 978 .956 933 959 .017
femur right 951 1.000 976 976 1.000 976 .980 018
gallbladder .821 795 .897 .846 923 .872 .859 .048
gluteus maximus left 1.000 1.000 1.000 1.000 1.000 .977 996 .009
gluteus maximus right 1.000 1.000 1.000 1.000 1.000 977 996 .009
gluteus medius left 1.000 1.000 1.000 977 1.000 977 992 .012
gluteus medius right 1.000 1.000 1.000 1.000 1.000 1.000 1.000 .000
gluteus minimus left 1.000 1.000 1.000 977 1.000 .977 992 012
ﬁluleus minimus right 1.000 1.000 1.000 1.000 1.000 1.000 1.000 .000
eart atrium left 1.000 1.000 1.000 1.000 1.000 957 993 .017
heart atrium right 1.000 1.000 1.000 1.000 1.000 959 993 .017
heart myocardium 1.000 1.000 1.000 1.000 1.000 1.000 1.000 .000
heart ventricle left 1.000 1.000 1.000 1.000 1.000 1.000 1.000 .000
heart ventricle right 1.000 1.000 1.000 1.000 1.000 1.000 1.000 .000
hip left 1.000 1.000 1.000 1.000 1.000 .977 996 .009
hip right 1.000 1.000 1.000 1.000 1.000 1.000 1.000 .000
humerus left 923 872 974 .949 .846 949 919 .050
humerus right 917 .938 979 917 .896 958 934 .031
iliac artery left 1.000 1.000 1.000 977 1.000 .977 992 012
iliac artery right 1.000 1.000 1.000 977 1.000 .977 992 012
iliac vena left 1.000 1.000 1.000 977 1.000 .977 992 012
iliac vena right 1.000 1.000 1.000 977 1.000 .977 992 012
iliopsoas left .960 .980 1.000 .980 .980 .980 .980 .013
iliopsoas right 980 980 980 980 .980 1.000 984 .008
inferior vena cava 1.000 1.000 982 1.000 965 1.000 991 .015
kidney left 981 943 981 962 943 1.000 969 .023
kidney right .980 1.000 .980 .980 939 1.000 980 .022
liver 1.000 1.000 .982 .982 945 .982 982 .020
lung lower lobe left 982 1.000 982 982 1.000 982 988 .009
lung lower lobe right 982 982 982 1.000 1.000 1.000 991 .010
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lung middle lobe right 1.000 1.000 1.000 1.000 .980 980 .993 011
lung upper lobe left 1.000 1.000 1.000 1.000 1.000 982 997 .007
lung upper lobe right 1.000 978 957 978 1.000 1.000 .986 018
pancreas 1.000 1.000 .980 .980 .980 1.000 990 011
portal and splenic vein 980 980 .980 .980 .980 980 980 .000
pulmonary artery .900 925 975 975 975 925 .946 .033
rib left 1 1.000 1.000 1.000 1.000 974 1.000 996 011
rib left 10 980 980 1.000 1.000 1.000 1.000 993 .010
rib left 11 1.000 1.000 980 .980 1.000 1.000 993 .010
rib left 12 .938 .896 979 979 .958 979 955 .033
rib left 2 1.000 1.000 1.000 1.000 1.000 1.000 1.000 .000
rib left 3 1.000 1.000 1.000 976 976 951 984 .020
rib left 4 975 975 1.000 950 1.000 1.000 983 .020
rib left 5 1.000 1.000 1.000 932 977 977 981 .027
rib left 6 980 980 980 1.000 1.000 980 987 .010
rib left 7 1.000 1.000 1.000 1.000 1.000 980 997 .008
rib left 8 1.000 1.000 1.000 1.000 1.000 1.000 1.000 .000
rib left 9 1.000 1.000 1.000 1.000 1.000 1.000 1.000 .000
rib right 1 1.000 1.000 1.000 1.000 974 1.000 996 011
rib right 10 1.000 1.000 1.000 1.000 1.000 1.000 1.000 .000
rib right 11 1.000 980 980 980 1.000 1.000 990 011
rib right 12 915 872 .936 979 .936 .894 922 .037
rib right 2 1.000 1.000 1.000 1.000 1.000 1.000 1.000 .000
rib right 3 976 951 976 951 976 .927 959 .020
rib right 4 951 976 1.000 976 1.000 976 980 .018
rib right 5 1.000 977 1.000 932 977 977 977 .025
rib right 6 959 959 959 1.000 1.000 959 973 .021
rib right 7 1.000 1.000 1.000 1.000 1.000 1.000 1.000 .000
rib right 8 1.000 1.000 1.000 1.000 1.000 1.000 1.000 .000
rib right 9 980 1.000 980 1.000 1.000 980 990 011
sacrum 1.000 1.000 1.000 977 1.000 .977 992 012
scapula left 976 976 951 976 1.000 1.000 980 .018
scapula right 953 953 953 953 1.000 977 965 .019
small bowel 979 .958 979 958 938 .958 962 .016
spleen 1.000 1.000 .960 1.000 .980 .980 987 .016
stomach 1.000 1.000 980 1.000 1.000 1.000 997 .008
trachea 1.000 1.000 1.000 1.000 1.000 .976 996 .010
urinary bladder 1.000 1.000 .977 977 .977 .977 984 012
vertebrae C1 929 .857 929 929 929 .857 905 .037
vertebrae C2 1.000 923 1.000 1.000 .846 923 949 .063
vertebrae C3 .929 .857 1.000 1.000 929 1.000 952 .058
vertebrae C4 .867 .800 933 933 733 733 833 .092
vertebrae C5 .850 .750 .850 .850 900 900 .850 .055
vertebrae C6 .909 .848 .848 939 788 .848 .864 .053
vertebrae C7 1.000 1.000 1.000 972 861 1.000 972 .056
vertebrae L1 1.000 1.000 938 1.000 1.000 1.000 990 .026
vertebrae L2 955 1.000 977 932 955 977 966 .024
vertebrae L3 977 1.000 977 977 .909 1.000 973 .033
vertebrae L4 1.000 932 1.000 1.000 977 1.000 985 .028
vertebrae L5 1.000 953 1.000 1.000 1953 1.000 984 .024
vertebrae T1 1.000 1.000 1.000 973 919 1.000 982 .033
vertebrae T10 980 1.000 1.000 .980 1.000 980 990 011
vertebrae T11 979 1.000 1.000 979 .979 1.000 990 011
vertebrae T12 1.000 980 1.000 1.000 980 1.000 993 011
vertebrae T2 1.000 1.000 1.000 1.000 974 1.000 996 011
vertebrae T3 974 974 .974 974 974 974 974 .000
vertebrae T4 1.000 1.000 1.000 1.000 1.000 974 996 010
vertebrae T5 974 974 974 1.000 1.000 949 979 019
vertebrae T6 944 944 1.000 1.000 1.000 944 972 030
vertebrae T7 974 947 .947 974 1.000 .947 965 21
vertebrae T8 978 978 956 956 .956 933 959 017
vertebrae T9 1.000 .959 .980 .980 1.000 .959 980 018
Average 979 972 .983 978 973 974

STD .037 .050 032 .032 .046 .042

3.2 Re-ranking

This section presents the retrieval recalls after applying the re-ranking method of Section[2.5] The TP and FN definitions
for volume-based and region-based are the same as the Section [3.1]

3.2.1 Volume-based

Table [8] and Table [9] show the retrieval recalls for 29 coarse anatomical structures and 104 original TS anatomical
structures using the proposed re-ranking method. All the recalls are improved using re-ranking. The performance of
the models for 29 classes is close with only slight differences. DINOv1 and DreamSim have a slightly better recall in
comparison, with an average recall of .967 but the standard deviation of DINOv1 is slightly lower (.040 vs. .045). In
104 anatomical regions, SwinTransformer performs better than the other models with an average recall of .924 but its
standard deviation (.072) is the lowest.
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Table 8: Volume-based retrieval recall of coarse anatomical regions (29 classes) using HNSW Indexing and re-ranking.
In each row, bold numbers represent the best-performing values, while italicized numbers indicate the worst-performing.
The separate average and standard deviation (STD) columns are color-coded, with blue indicating the best-performing
values and yellow indicating the worst-performing values across different models. Additionally, bold numbers in
colored columns represent the best classes in terms of average and standard deviation, while italicized values represent
the worst-performing class across the models.

Model DINOv1 DINOv2 DreamSim _ SwinTrans. ResNet50
Dataset (pre-trained) (ImgNet) (ImgNet) (ImgNet) (RadImg) (Fractaldb) (RadImg) Average STD
adrenal gland 1.000 1.000 980 960 1.000 960 983 .020
autochthon 985 969 985 985 1.000 1.000 987 .012
brain 923 923 .846 923 692 .846 .859 .090
cardiovascular system 1.000 1.000 984 1.000 1.000 1.000 997 .006
clavicula 974 974 974 974 1.000 1.000 983 .013
colon 1.000 981 1.000 962 962 981 981 .017
duodenum .920 900 960 940 1.000 920 940 .036
esophagus 982 1.000 982 1.000 1.000 1.000 994 .009
face 941 .882 824 765 647 .824 814 .092
femur 956 978 933 956 978 933 956 .020
gallbladder 821 821 897 872 872 821 .850 .034
luteus muscles 1.000 1.000 1.000 1.000 1.000 977 996 .009
ip 1.000 1.000 1.000 1.000 1.000 977 996 .009
humerus 918 857 959 918 918 980 925 .042
iliopsoas 962 962 1.000 1.000 1.000 943 978 .025
kidney .964 945 1.000 964 982 964 970 .019
liver 982 964 1.000 982 982 1.000 985 .014
lung 983 983 948 966 983 983 974 .014
pancreas 940 960 980 980 980 960 967 .016
portal and splenic vein 1.000 .980 .980 .980 .980 .980 983 .008
rib 983 983 983 983 983 1.000 986 .007
sacrum 977 977 1.000 977 1.000 .977 985 .012
scapula 909 932 932 909 977 955 936 .027
small bowel 958 958 958 958 1.000 938 962 .020
spleen 1.000 1.000 .980 980 1.000 1.000 993 .010
stomach 1.000 1.000 1.000 .980 1.000 .980 993 .010
trachea 976 976 951 976 951 976 967 .013
urinary bladder 1.000 1.000 1.000 1.000 1.000 977 996 .009
vertebrae .984 .969 1.000 984 1.000 1.000 990 .013
Average 967 961 967 961 962 .960
STD 040 .045 .045 049 086 050

Table 9: Volume-based retrieval recall of all TS anatomical regions (104 classes) using HNSW Indexing and re-ranking.
In each row, bold numbers represent the best-performing values, while italicized numbers indicate the worst-performing.
The separate average and standard deviation (STD) columns are color-coded, with blue indicating the best-performing
values and yellow indicating the worst-performing values across different models. Additionally, bold numbers in
colored columns represent the best classes in terms of average and standard deviation, while italicized values represent
the worst-performing class across the models.

Model DINOv1 DINOv2 DreamSim __ SwinTrans. ResNet50
Dataset (pre-trained) (ImgNet) (ImgNeft) (ImgNet) (RadImg) (Fractaldb) (RadImg) Average STD
adrenal gland Teft 920 .880 880 940 920 .880 903 027
adrenal gland right 940 .920 .880 940 .920 .900 917 .023
aorta 951 902 885 951 885 918 915 .030
autochthon left 938 877 .892 938 .908 923 913 .025
autochthon right 938 877 .892 938 .908 923 913 .025
brain 923 .846 .846 769 .692 769 .808 .081
clavicula left 949 .897 .949 .897 974 974 940 .035
clavicula right 974 921 974 921 974 974 956 .027
colon 943 .887 .887 943 .868 .906 906 .032
duodenum .860 .800 .840 920 .880 .840 857 .041
esophagus .929 911 911 946 .929 .929 926 013
face 941 .824 .824 647 647 765 775 114
femur left .889 .889 .800 933 .867 .844 .870 .045
femur right .878 .878 .805 976 902 .854 882 .057
gallbladder 795 744 795 872 821 769 799 .044
gluteus maximus left 930 907 .860 977 907 .884 911 .040
gluteus maximus right 930 907 837 977 907 .884 907 .047
gluteus medius left 932 .886 .864 977 909 .886 909 .041
gluteus medius right 930 .884 .860 977 907 907 911 .040
gluteus minimus left 930 907 .860 977 907 .884 911 .040
ﬁluteus minimus right 929 .905 857 976 .905 .905 913 .039
eart atrium left .894 915 915 979 936 936 929 .029
heart atrium right 918 918 .898 980 918 939 929 .028
heart myocardium 918 918 .898 980 918 939 929 .028
heart ventricle left 918 918 .898 980 918 939 929 .028
heart ventricle right 918 918 .898 980 918 939 929 .028
hip left 932 .886 .864 977 909 .886 909 .041
hip right 932 .886 .864 977 909 .886 909 .041
humerus left .949 821 .949 .923 974 .949 927 .055
humerus right .854 771 875 875 .854 896 854 .044
iliac artery left 932 .886 .864 977 909 .886 909 .041
iliac artery right .909 .864 841 955 .909 .886 .894 .040
iliac vena left 932 .886 .864 977 909 .886 909 .041
iliac vena right 909 .864 841 955 909 .886 .894 .040
iliopsoas left .906 .868 .887 981 .887 .868 .899 .042
iliopsoas right 902 .843 .882 980 .882 .882 .895 .046
inferior vena cava .947 .895 .895 965 877 .930 918 .034
kidney left .868 .849 .868 925 .868 .887 877 .026
kidney right .860 .800 .880 940 .860 .860 .867 .045
liver 927 .891 .891 964 .873 927 912 .033
lung lower lobe left 912 877 .842 .895 912 .895 .889 .026
lung lower lobe right 929 875 .857 911 911 911 .899 .027
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lung middle lobe right 918 918 .898 980 918 .939 929 .028
lung upper lobe left 929 911 911 929 929 929 923 .009
lung upper lobe right .891 .848 .870 .870 935 913 .888 .032
pancreas .880 .880 .880 960 .880 .900 .897 .032
portal and splenic vein 940 900 .880 960 900 920 917 .029
pulmonary artery .850 .850 .825 .850 875 875 854 .019
rib left 1 974 921 974 921 974 974 .956 .027
rib left 10 922 .902 .882 961 .902 941 918 .029
rib left 11 922 .902 .882 961 .902 .941 918 .029
rib left 12 .896 917 875 917 .896 .896 .899 016
rib left 2 950 925 950 925 950 950 942 .013
rib left 3 951 .902 951 927 951 951 .939 .020
rib left 4 925 .900 .900 .900 950 925 917 .020
rib left 5 .886 .886 .886 .909 977 932 913 .036
rib left 6 .860 .860 .880 960 .900 .900 .893 .037
rib left 7 .939 918 918 980 918 .939 935 .024
rib left 8 941 922 .902 961 922 941 931 .021
rib left 9 941 922 .902 961 922 941 931 .021
rib right 1 974 921 974 921 974 974 .956 .027
rib right 10 922 .902 .882 961 .902 941 918 .029
rib right 11 922 902 .882 961 902 941 918 .029
rib right 12 .851 .894 851 957 872 .894 .887 .040
rib right 2 974 923 974 923 974 974 957 .026
rib right 3 927 .878 927 902 951 927 919 .025
rib right 4 927 .878 .878 902 927 927 907 .024
rib right 5 .886 .864 .886 932 977 932 913 .042
rib right 6 .878 .837 .898 959 .857 .898 .888 .042
rib right 7 939 918 918 980 918 939 935 .024
rib right 8 941 922 .902 961 922 941 931 .021
rib right 9 922 .902 .882 941 922 922 915 .020
sacrum 909 .864 .864 955 909 .886 .898 .034
scapula left 902 902 .902 .878 951 .902 .907 .024
scapula right .907 .860 .884 .860 953 .930 .899 .038
small bowel .896 .854 .833 938 .896 .854 .878 .038
spleen .940 920 .880 960 .920 .940 927 .027
stomach 941 922 902 961 902 922 925 .023
trachea 951 902 927 902 927 927 923 018
urinary bladder 930 .907 .860 977 .907 .884 911 .040
vertebrae C1 857 786 857 714 714 786 786 .064
vertebrae C2 923 .846 923 .769 .769 .846 .846 .069
vertebrae C3 929 .857 929 714 .857 786 .845 .084
vertebrae C4 .867 .800 .867 .667 .800 733 789 .078
vertebrae C5 750 .700 750 .600 .650 .650 683 .061
vertebrae C6 788 .848 909 788 .758 .758 .808 .060
vertebrae C7 972 917 972 917 1.000 .944 .954 .034
vertebrae L1 .898 .878 .878 939 .898 918 901 .024
vertebrae L.2 .864 841 .886 955 .886 841 .879 .042
vertebrae L3 .886 818 .864 932 .864 .841 .867 .039
vertebrae L4 .909 841 .864 932 .886 .886 .886 .032
vertebrae LS .907 .837 .860 953 .907 .907 .895 .041
vertebrae T1 973 919 973 919 973 973 955 .028
vertebrae T10 .898 918 .898 959 918 .939 922 .024
vertebrae T11 938 917 917 979 917 .938 934 .024
vertebrae T12 940 .920 .900 940 .920 940 927 .016
vertebrae T2 974 921 974 921 974 974 .956 .027
vertebrae T3 .947 .895 .947 .895 974 .947 .934 .032
vertebrae T4 949 .897 923 923 949 949 932 .021
vertebrae TS 949 .897 .897 .923 923 923 919 .019
vertebrae T6 .944 .861 917 944 917 972 .926 .038
vertebrae T7 .872 .846 .897 897 .897 .897 .885 .021
vertebrae T8 .822 .844 .867 911 .889 .889 .870 .033
vertebrae T9 .857 .878 .878 939 .898 918 .895 .030
Average 914 .880 887 924 901 902

STD 040 .041 .040 .072 .061 .055

3.2.2 Region-based

Table [T0] and Table [TT]show the retrieval recall for 29 coarse anatomical structures and 104 original TS anatomical
structures employing the proposed re-ranking method. Using the re-ranking, the overall performance of all the models
has improved. DreamSim performs the best with the average retrieval recall of .987 4= .027 and .987 4= .024 for 29 and
104 classes, respectively. There are only slight variations between the performance on coarse and all the original TS
classes. Similar to the count-based method in the anatomical region retrieval many classes are perfectly retrieved (recall
of 1.0). There is a low variation among models and between classes where the highest standard deviation is .064 and
.042.
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Table 10: Region-based retrieval recall of coarse anatomical regions (29 classes) using HNSW Indexing and re-ranking.
In each row, bold numbers represent the best-performing values, while italicized numbers indicate the worst-performing.
The separate average and standard deviation (STD) columns are color-coded, with blue indicating the best-performing
values and yellow indicating the worst-performing values across different models. Additionally, bold numbers in
colored columns represent the best classes in terms of average and standard deviation, while italicized values represent
the worst-performing class across the models.

Model DINOv1 DINOv2 DreamSim _ SwinTrans. ResNet50
Dataset (pre-trained) (ImgNet) (ImgNet) (ImgNet) (RadImg) (Fractaldb) (RadImg) Average STD
adrenal gland 1.000 1.000 1.000 .970 .990 1. .993 012
autochthon .992 1.000 992 985 1.000 992 994 .006
brain .923 .846 1.000 923 1.000 1.000 949 .063
cardiovascular system 1.000 1.000 1.000 1.000 1.000 1.000 1.000 000
clavicula 987 987 1.000 1.000 .974 987 989 .010
colon 1.000 1.000 1.000 981 981 981 991 .010
duodenum .980 .980 1.000 960 .940 .980 973 .021
esophagus 1.000 1.000 1.000 1.000 1.000 1.000 1.000 000
face 882 .824 882 .824 882 .765 .843 .048
femur 965 977 .988 1.000 1.000 977 984 .014
gallbladder 795 .846 923 872 .897 923 .876 .050
luteus muscles 1.000 1.000 1.000 988 1.000 996 997 .005
ip 1.000 1.000 1.000 1.000 1.000 .989 998 .005
humerus 954 954 1.000 966 931 .966 962 .023
iliopsoas 1.000 .990 .990 981 981 990 989 .007
kidney 1.000 1.000 990 990 .980 990 992 .007
liver 1.000 1.000 1.000 1.000 1.000 981 997 .008
lung 1.000 1.000 1.000 1.000 1.000 .989 998 .005
pancreas 1.000 1.000 1.000 1.000 .980 1.000 997 .008
portal and splenic vein 980 980 980 980 .960 980 977 .008
rib .999 .999 1.000 1.000 .999 1.000 1.000 000
sacrum 1.000 1.000 1.000 1.000 1.000 .977 996 .009
scapula 964 .964 952 976 988 1.000 974 .018
small bowel 979 1.000 1958 1958 979 979 976 .016
spleen 1.000 1.000 .980 1.000 1.000 1.000 997 .008
stomach 1.000 1.000 1.000 1.000 1.000 1.000 1.000 .000
trachea 1.000 1.000 1.000 1.000 1.000 1.000 1.000 .000
urinary bladder 1.000 1.000 1.000 977 1.000 953 .988 .019
vertebrae 1.000 1.000 1.000 998 .998 .997 999 .002
Average 979 OTT 987 977 981 .979
STD 045 050 027 041 .031 045

Table 11: Region-based retrieval recall of all TS anatomical regions (104 classes) using HNSW Indexing and re-ranking.
In each row, bold numbers represent the best-performing values, while italicized numbers indicate the worst-performing.
The separate average and standard deviation (STD) columns are color-coded, with blue indicating the best-performing
values and yellow indicating the worst-performing values across different models. Additionally, bold numbers in
colored columns represent the best classes in terms of average and standard deviation, while italicized values represent
the worst-performing class across the models.

Model DINOv1 DINOv2 DreamSim SwinTrans. ResNet50
Dataset (pre-trained) (ImgNet) (ImgNet) (ImgNet) (RadImg) (Fractaldb) (RadImg) Average STD
adrenal gland Teft ‘?87) 1.%‘0‘0 1.%‘01] 940 1.000 1. 987 024
adrenal gland right 1.000 1.000 1.000 .980 .960 1.000 990 .017
aorta 1.000 1.000 1.000 1.000 1.000 1.000 1.000 .000
autochthon left 1.000 1.000 1.000 985 1.000 985 995 .008
autochthon right 985 1.000 985 985 1.000 1.000 992 .008
brain 923 .846 1.000 923 1.000 1.000 .949 .063
clavicula left 974 974 1.000 1.000 949 974 979 .019
clavicula right 1.000 1.000 1.000 974 1.000 1.000 996 011
colon 1.000 1.000 1.000 981 981 981 991 .010
duodenum .980 .980 1.000 .960 940 .980 973 .021
esophagus 1.000 1.000 1.000 1.000 1.000 1.000 1.000 .000
face 882 .824 .882 824 882 765 .843 .048
femur left 956 .956 978 1.000 1.000 956 974 .022
femur right 951 1.000 951 1.000 1.000 1.000 984 .025
gallbladder 795 .846 923 .872 .897 923 .876 .050
gluteus maximus left 1.000 1.000 1.000 977 1.000 977 992 .012
gluteus maximus right 1.000 1.000 1.000 1.000 1.000 1.000 1.000 000
gluteus medius left 1.000 1.000 1.000 977 1.000 1.000 996 .009
gluteus medius right 1.000 1.000 1.000 1.000 1.000 1.000 1.000 .000
gluteus minimus left 1.000 1.000 1.000 977 1.000 1.000 996 .009
ﬁluleus minimus right 1.000 1.000 1.000 1.000 1.000 1.000 1.000 .000
eart atrium left 1.000 1.000 1.000 1.000 1.000 979 996 .009
heart atrium right 1.000 1.000 1.000 1.000 1.000 1.000 1.000 .000
heart myocardium 1.000 1.000 1.000 1.000 1.000 .980 997 .008
heart ventricle left 1.000 1.000 1.000 1.000 1.000 1.000 1.000 .000
heart ventricle right 1.000 1.000 1.000 1.000 1.000 1.000 1.000 .000
hip left 1.000 1.000 1.000 1.000 1.000 977 996 .009
hip right 1.000 1.000 1.000 1.000 1.000 1.000 1.000 .000
humerus left .949 923 1.000 974 .897 .897 .940 .042
humerus right .938 .938 1.000 917 917 1.000 951 .039
iliac artery left 1.000 1.000 1.000 977 1.000 .977 992 012
iliac artery right 1.000 1.000 1.000 977 1.000 .977 992 012
iliac vena left 1.000 1.000 1.000 977 1.000 .977 992 012
iliac vena right 1.000 1.000 1.000 977 1.000 .977 992 .012
iliopsoas left 981 981 1.000 981 981 981 984 .008
iliopsoas right 1.000 980 980 .980 .980 1.000 987 .010
inferior vena cava 1.000 1.000 1.000 1.000 1.000 1.000 1.000 .000
kidney left 981 .962 981 981 .962 981 975 .010
kidney right 980 1.000 1.000 980 1.000 1.000 993 011
liver 1.000 1.000 1.000 1.000 1.000 981 997 .008
lung lower lobe left 1.000 1.000 1.000 .982 1.000 965 991 .015
lung lower lobe right 982 982 982 1.000 1.000 982 988 .009
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lung middle lobe right 1.000 1.000 1.000 1.000 1.000 1.000 1.000 .000
lung upper lobe left 1.000 1.000 1.000 1.000 1.000 1.000 1.000 .000
lung upper lobe right 978 978 .957 1.000 1.000 978 982 .016
pancreas 1.000 1.000 1.000 1.000 980 1.000 997 .008
portal and splenic vein 980 980 980 .980 .960 980 977 .008
pulmonary artery 923 974 974 1.000 1.000 974 974 .028
rib left 1 1.000 1.000 1. 1.000 1.000 1.000 1.000 .000
rib left 10 980 980 1 1.000 1.000 990 011
rib left 11 1.000 1.000 1 980 1.000 1.000 997 008
rib left 12 917 917 1 979 979 .938 955 036
rib left 2 1.000 1.000 1 1.000 1.000 1.000 1.000 000
rib left 3 1.000 1.000 1. 1.000 1.000 .976 996 .010
rib left 4 975 975 1. 1.000 1.000 1.000 992 .013
rib left 5 1.000 1.000 1. 955 1.000 977 989 019
rib left 6 980 980 980 1.000 1.000 1.000 0 011
rib left 7 1.000 1.000 1 1.000 1.000 1.000 1.000 000
rib left 8 1.000 1.000 1 1.000 1.000 1.000 1.000 000
rib left 9 1.000 1.000 1 1.000 1.000 1.000 1.000 000
rib right 1 1.000 1.000 1. 1.000 947 1.000 991 .021
rib right 10 1.000 1.000 1.000 1.000 1.000 1.000 1.000 .000
rib right 11 1.000 1.000 1.000 .980 1.000 1.000 997 .008
rib right 12 .936 915 979 979 .957 .957 954 .025
rib right 2 1.000 1.000 1.000 1.000 1.000 1.000 1.000 .000
rib right 3 976 1.000 .976 .976 1.000 951 980 .018
rib right 4 975 975 1.000 1.000 1.000 1.000 992 .013
rib right 5 1.000 1.000 1.000 953 1.000 1.000 992 .019
rib right 6 .980 .980 .980 1.000 1.000 959 983 015
rib right 7 1.000 1.000 1.000 1.000 1.000 1.000 1.000 .000
rib right 8 1.000 1.000 1.000 1.000 1.000 1.000 1.000 .000
rib right 9 980 1.000 980 1.000 1.000 1.000 993 .010
sacrum 1.000 1.000 1.000 1.000 1.000 .977 996 .009
scapula left 976 976 951 976 1.000 1.000 980 018
scapula right 953 953 953 977 977 1.000 969 .019
small bowel 979 1.000 958 958 .979 .979 976 016
spleen 1.000 1.000 980 1.000 1.000 1.000 997 .008
stomach 1.000 1.000 1.000 1.000 1.000 1.000 1.000 .000
trachea 1.000 1.000 1.000 1.000 1.000 1.000 1.000 .000
urinary bladder 1.000 1.000 1.000 977 1.000 953 988 .019
vertebrae C1 929 929 929 .857 .857 .786 .881 .058
vertebrae C2 1.000 1923 1.000 1.000 1.000 1.000 987 .031
vertebrae C3 929 929 1.000 1.000 1.000 1.000 976 .037
vertebrae C4 .867 .800 933 933 .867 933 .889 .054
vertebrae C5 .895 842 .895 842 842 842 .860 .027
vertebrae C6 .862 .828 .897 897 724 .828 .839 .064
vertebrae C7 1.000 1.000 1.000 1.000 944 972 986 .023
vertebrae L1 1.000 1.000 .980 1.000 .980 1.000 .993 011
vertebrae L2 .977 .977 .977 977 1.000 .977 981 .009
vertebrae L3 .977 1.000 .977 977 1.000 1.000 988 .013
vertebrae L4 1.000 977 .977 1.000 1.000 1.000 992 012
vertebrae L5 1.000 .977 .977 1.000 1.000 1.000 992 012
vertebrae T1 1.000 1.000 1.000 973 919 1.000 982 .033
vertebrae T10 980 1.000 1.000 .980 980 1.000 990 011
vertebrae T11 979 979 1.000 .979 1.000 1.000 .990 011
vertebrae T12 1.000 1.000 1.000 980 1.000 1.000 .997 .008
vertebrae T2 1.000 1.000 1.000 1.000 974 1.000 .996 011
vertebrae T3 1.000 974 1.000 974 1.000 974 987 .014
vertebrae T4 1.000 1.000 1.000 1.000 1.000 1.000 1.000 .000
vertebrae T5 1.000 974 974 1.000 1.000 1.000 991 .013
vertebrae T6 917 972 972 1.000 972 972 968 .027
vertebrae T7 949 949 949 974 974 1.000 966 .021
vertebrae T8 955 977 955 1.000 1.000 .909 966 .034
vertebrae T9 .980 .980 .980 .980 1.000 .980 .983 .008
Average 980 978 987 081 082 980

STD .036 042 .024 .033 .042 .041

4 Discussion

4.1 Dataset

As depicted in Figure [d] the labels inside the database and query subset (derived from TS train and test set, respectively)
are not balanced. This should resemble a pattern as can be observed in future real-world scenarios of image retrieval.
At the same time, this imbalance should be kept in mind when reading and interpreting recall values from the provided
result tables.

Additionally, it is worth noting that the size and shape of organs can impact the probability of correctly predicting a
given label by chance. For example, smaller organs can be less likely to collect "by-chance" true positive predictions
compared to larger organs. Similarly, organs with elongated shapes aligned with the slice-wise sampling direction can
increase the likelihood of "by-chance" hits. A volume and shape-adjusted representation of recall values does not seem
reasonable and thus has not been performed in this work. However, organ volume as shown in Figure [5|and Figure [6]
should be considered while interpreting result tables.

Figure [7) and Figure [§] present an overview of mean recall for each of the retrieval methods (all models) versus the mean
anatomical region size for 29 and 104 classes, respectively. There is no pattern suggesting any correlation between the
size of the anatomical region and the average retrieval recall.
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Figure 4: Distribution of the classes in database (a) and query (b) volumes.
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Figure 5: distribution of the size of the anatomical regions for the 29 regions (a) big anatomical regions
with a physical size range that exceeds 10 mm?, (b) mid-size anatomical regions with a physical size in
range in the range (.1 : 1) x 10° mm? and (c) small anatomical regions with a physical size smaller than
1 x 108 mm?.

4.2 Re-ranking

For the first time, we could successfully show the feasibility of ColBERT-inspired re-ranking out of an image retrieval
task. In theory, this shows that CBIR results can be made subject to context-aware re-ranking. This is very important as
this provides a conceptual entry point to use the information of a future retrieval solution in the real world. Concretely,
observations such as user behavior on a graphical user interface, and temporal or medical relevance can be "factored
in" to adjust the search results. Further research will study the advantages and disadvantages of ColBERT-inspired

re-ranking. Further insights into balancing computational costs in the context of latency-accuracy trade-offs will be
shared.

4.3 Embeddings

It was shown that embeddings generated from self-supervised models are slightly better for image retrieval tasks
than those derived from regular supervised models. This is true for coarse anatomical regions with 29 labels (see
Table[T2) as well as fine-granular anatomical regions with 104 regions (see Table[I3)). This is roughly preserved for all
modes of retrieval (i.e. slice-wise, volume-based, and region-based). More generally, the differences in recall across
differently pre-trained models (except pre-trained from fractal image) are very small and except for slice-wise close to
1.0. Practically, the exact choice of the feature extractor should not be noticeable to a potential user in a downstream
application. Further, it can be concluded that pre-training on general natural images (i.e. ImageNet) resulted in slightly
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Figure 8: Overview of average recall vs. mean anatomical region size for 104 anatomical regions for (a) slice-wise,
(b) volume-based, (c) volume-based and re-ranking, (d) region-based, (e) region-based and re-ranking retrieval.

10*
mean size mm3 (log scale)



Content-based image retrieval for multi-class volumetric radiology images: a benchmark study

Table 12: Summary of the average retrieval recall and standard deviation between classes for 29 anatomical regions, the
boldfaced values highlight the highest recall across feature extractors.

Model DINOv1 DINOv2 DreamSim SwinTrans. ResNet50

Dataset (pre-trained) (ImgNet) (ImgNet) (ImgNet) (RadImg) (Fractaldb) (RadImg)
slice-wise .839 £+ .156 .819 £ .148 .849 1+ .148 .824 £+ .146 740 £+ .167 .802 £+ .14
volume-based 1949 £+ .072 .932 £+ .064 1936 + .063 1932 £+ .067 1939 £+ .078 952 + .04
volume-based re-ranked ~ .967 £ .040 961 £ .045 .967 £+ .045 1961 £+ .049 .962 £+ .086 .960 £ .050
region-based 977 £+ .047 .976 £+ .051 979 + .037 973 £+ .042 976 £+ .033 978 £+ .033
region-based re-ranked 979 4+ .045 977 £+ .050 987 + .027 977 £+ .041 1981 £+ .031 979 £+ .04

Table 13: Summary of the average retrieval recall and standard deviation between classes for 104 anatomical regions,
the boldfaced values highlight the highest recall across feature extractors.

Model DINOvI DINOv2 DreamSim SwinTrans. ResNet50

Dataset (pre-trained) (ImgNet) (ImgNet) (ImgNet) (RadImg) (Fractaldb) (RadImg)
slice-wise 784 £+ .137 750 £+ .144 797 +.129 765 £+ .140 .659 + .172 726 £+ .154
volume-based .923 + .077 .887 £ .071 .892 £+ .080 .873 £+ .082 .856 £ .054 .908 £+ .081
volume-based re-ranked .914 4+ .040 .880 £ .041 .887 £+ .040 .924 + .072 .901 £ .061 .902 £ .055
region-based 979 4+ .037 972 £+ .050 .983 + .032 978 £+ .032 .973 £+ .046 974 £ .042
region-based re-ranked .980 £ .036 978 £+ .042 .987 + .024 1981 £+ .033 1982 £ .042 .980 £ .041

more performant embedding vectors than domain-specific natural images (i.e. RadlmageNet). This is somewhat
surprising and is subject to further research.

Although, the model pre-trained of formula-derived synthetic images of fractals (i.e. Fractaldb) showed the lowest
recall accuracy the absolute values are surprisingly high considering that the model learned visual primitives out of
rendered fractals. This is very encouraging as the Formular-Driven Supervised Learning (FDSL) can easily be extended
to the very high number of data points per class and also several virtual classes within one family of formulas [Kataoka
et al.| 2022]]. Additionally, the mathematical space of formulas for producing visual primitives is virtually infinite and
thus it is the subject of further research whether radiology-specific visual primitives can be created that outperform
natural image-based pre-training. Again, FDSL does not require the effort of data collection, curation, and annotation.
It can scale to a large number of samples and classes which potentially results in a very smooth and evenly covered
latent space.

Embeddings derived from DreamSim architecture showed the highest overall retrieval recall in the region-based
retrieval with re-ranking. This was true for 29 coarse anatomical regions as well as the original 104 fine-granular
regions as used in TotalSegmentator. DreamSim is an ensemble architecture that uses multiple ViT embeddings with
additional fine-tuning using synthetic images. It is plausible that an ensemble approach outperforms single-architecture
embeddings (i.e. DINOv1, DINOv2, SwinTransformer, and ResNet50). Therefore, the usage of DreamSim is the
currently preferred method of embedding generation.

Worth discussing is an observation that can be found in all tables presenting recall values. Across all model architectures
(column) there are usually a few anatomies or regions (i.e. row) that show lower recall on average (see "Average"
column). For example, in Table|2] "gallbladder" showed poor retrieval accuracy, whereas in Table Table 4| "brain" and
"face" showed lower recall. The observation of isolated low-recall patterns can be seen across all modes of retrieval and
aggregation. The authors of this paper cannot provide an explanation, as to why certain anatomies perform worse in
certain retrieval configurations but gain high recall in many other retrieval configurations. This will be subject to future
research.

4.4 Volume-based vs Region-based Retrieval

Since multiple organs (i.e. labels) are present in each query volume, there are essentially two ways in which image
retrieval can be performed. The preferred choice depends on the context of the retrieval task in the real world. If the goal
is to find a scan out of a database that is most similar to a complete query scan with the entirety of all present organs
(think scan-id to scan-id but visual), then volume-based retrieval is the right choice. In contrast, if the experimenter is
interested in a particular organ and its most similar counterpart in the database (and all other organs just happen to be
in the same scan due to proximity), then region-based retrieval is advised. The second query scenario offers a higher
retrieval recall. The slice-wise retrieval can find the most similar slice of a volume regardless of other slices. This is not
usually a practical choice in real scenarios. Figure [9] visualizes the options.
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Figure 9: An overview of three retrieval methods: (a) Slice-wise, where the retrieval is based on one selected slice
e.g., the user zooms to a slice and retrieves the most similar slice (b) volume-based, where the retrieval is based
on a complete volume, e.g., the user would like to retrieve similar volumes to the volumes under examination or
simply filter the database (c) region-based, where the retrieval is based on the selected organ (or sub-volume), e.g,
the user zooms in to a specific region and the most similar volume containing that region is retrieved.

5 Conclusion

Our study establishes a new benchmark for the retrieval of anatomical structures within 3D medical volumes, utilizing
the TotalSegmentator dataset to facilitate targeted queries of volumes or sub-volumes for specific anatomical structures.
The results highlight the potential of leveraging pre-trained embeddings, originally trained on non-medical images, for
medical image retrieval across diverse anatomical regions with a wide size range.

We introduced a re-ranking method based on a late interaction model from text retrieval, i.e. ColBERT Khattab and
Zaharia [|2020]. The proposed ColBERT-inspired method enhances the retrieval recall of all anatomical regions. Future
investigations can focus on refining and optimizing the computational efficiency of the proposed re-ranking method.

We evaluated the performance of different embeddings pre-trained supervised and self-supervised on medical and
non-medical data. The results indicate that pre-training on general natural images (e.g., ImageNet) yields slightly more
effective embedding vectors than domain-specific natural images (e.g., RadlmageNet). However, given the marginal
difference, the choice of embeddings is unlikely to impact the user experience in downstream tasks significantly.

The retrieval of certain anatomical structures, such as the brain and face, demonstrates low recall across all embedding
and retrieval methods. Subsequent research can explore the prevalence of such patterns and potential solutions.

This benchmark sets the stage for future advancements in content-based medical image retrieval, particularly in
localizing specific organs or areas within scans.
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