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ABSTRACT Quantum machine learning (QML) is a promising field that explores the applications of 

quantum computing to machine learning tasks. A significant hurdle in the advancement of quantum 

machine learning lies in the development of efficient and resilient quantum classifiers capable of accurately 

mapping input data to specific, discrete target outputs. In this paper, we propose a novel approach to 

improve quantum classifier performance by using a data re-uploading strategy. Re-uploading classical 

information into quantum states multiple times can enhance the accuracy of quantum classifiers. We 

investigate the effects of different cost functions, such as fidelity and trace distance, on the optimization 

process and the classification results. We demonstrate our approach to two classification patterns: a linear 

classification pattern (LCP) and a non-linear classification pattern (NLCP). We evaluate the efficacy of our 

approach by benchmarking it against four distinct optimization techniques: L-BFGS-B, COBYLA, Nelder-

Mead, and SLSQP. Additionally, we study the different impacts of fixed datasets and random datasets. Our 

results show that our approach can achieve high classification accuracy and robustness and outperform the 

existing quantum classifier models. 

INDEX TERMS Data Re-uploading, Fidelity, Linear and Non-linear Classification Pattern, Quantum 

Classifiers, Quantum Machine Learning, Trace Distance

I. INTRODUCTION 

Quantum computing (QC) leverages the principles of 

quantum mechanics, specifically entanglement, 

superposition, and interference, to execute computations 

[2]. Rooted in the foundational concepts of quantum theory, 

this field explores the intricacies of quantum information. 

Unlike classical information, which can be easily cloned, 

quantum information is subject to the no-cloning theorem, 

restricting its processing possibilities. However, quantum 

information processing offers advantages in communication 

and computational tasks, such as solving algebraic 

problems, reducing sample complexity, and enhancing 

optimization processes. Notably, even simplified models of 

quantum computation can solve complex tasks, thereby 

holding promise for advancements in machine learning and 

artificial intelligence [3]. 

    Quantum machine learning represents a burgeoning 

intersection of disciplines that has garnered substantial 

interest [3-6]. At the heart of contemporary QML practices 

is the training of quantum circuits, aimed at processing both 

classical and quantum [7-13]. 

    The cross-pollination of ideas between quantum 

information processing and fields like artificial intelligence 

and machine learning is unlocking novel potentials [3]. 

While the complete spectrum of potential applications for 

QML is yet to be fully explored, it is reasonable to 

anticipate its transformative impact across various sectors, 

including cybersecurity [14, 15], meteorology [16], 

healthcare [17], finance [18], and agriculture [19]. This 

potential breadth of application is illustrated in figure 1,  

suggesting a vast horizon for quantum machine learning's 

contribution to modern challenges [2, 20]. Multilayered 

perceptron, also known as neural networks, has become a 

cornerstone of machine learning due to their versatile and 

powerful architecture [21]. In the emerging field of QML, 

quantum neural networks (QNNs) adapt this concept by 

leveraging quantum mechanics to process information [22]. 



 

These networks undergo a training process akin to their 

classical counterparts, where data is input into the quantum 

system, a cost function is computed based on the output, 

and the parameters of the QNN are iteratively adjusted 

through classical optimization techniques to minimize this 

cost function [21]. 

    In supervised learning, classification stands out as a 

commonly used task, where input data (x) is mapped to 

discrete target outputs y through a function approximation, 

denoted as y = f(x). The aim here is to develop a model that 

can predict the output with high accuracy for given inputs 

[23]. Classification tasks are broadly categorized into two 

types: binary classification, which involves distinguishing 

between two possible outcomes such as diagnosing cancer 

(positive or negative) or detecting email spam (spam or not 

spam); and multi-class classification, which involves 

categorizing inputs into more than two distinct classes, like 

identifying the subject of a photograph or recognizing digits 

in an image [24]. 

    Binary classification, in particular, has been a focus of 

machine learning research due to its wide applicability and 

foundational nature. Quantum computing has introduced 

novel approaches to this problem, such as quantum 

similarity-based binary classifiers and kernel methods that 

utilize quantum interference and explore the quantum 

Hilbert space. These quantum-enhanced methods promise 

significant advancements in machine learning, offering new 

ways to harness the computational power of quantum 

systems for complex classification tasks [25, 26]. 

    A significant area of focus within the QML domain is the 

development and refinement of quantum classifiers, which 

are quantum devices designed to solve classification 

problems in machine learning [27, 28]. Quantum classifiers 

have garnered considerable attention due to their potential 

to outperform classical classifiers in certain scenarios [27]. 

These classifiers leverage the principles of quantum 

superposition and entanglement to process and classify data 

in ways that are fundamentally different from their classical 

counterparts [27, 28]. Numerous quantum classification 

techniques have been introduced, expanding the range of 

potential applications in quantum computing. These 

encompass quantum support vector machines [29], quantum 

kernel approaches [30, 31], quantum decision trees [32], 

quantum nearest neighbor methods [33], and classifiers 

based on quantum annealing [27]. Each algorithm offers a 

unique approach to harnessing quantum computational 

advantages for solving complex classification problems. 

    A notable breakthrough in the QML field is the concept 

of data re-uploading. This methodology involves the cyclic 

encoding of classical information into a quantum system, 

allowing for the repeated integration of diverse datasets into 

the quantum processing workflow. Data re-uploading 

enables the construction of universal quantum classifiers 

[1], where a quantum circuit is meticulously organized into 

a series of stages dedicated to data integration and single-

qubit operations [34]. This approach not only enhances the 

flexibility and adaptability of quantum classifiers but also 

significantly boosts their accuracy and efficiency in 

handling various classification tasks. 

    Several studies have explored various optimization 

techniques to enhance the performance of quantum 

classifiers. Lockwood [35] presents a comprehensive 

empirical review of optimization techniques for quantum 

variational circuits, comparing 46 optimizer setups, 

including minimization methods such as L-BFGS-B, 

Nelder-Mead, and SLSQP, across different QML problems. 

Similarly, Lee et al. [36] propose an iterative layerwise 

optimization strategy for the quantum approximate 

optimization algorithm to reduce optimization costs while 

maintaining high approximation ratios. Their numerical 

simulations compare the performance of L-BFGS-B and 

Nelder-Mead optimizers in conjunction with the proposed 

strategy on the Max-cut problem. Although these studies 

provide valuable insights, there is still a lack of research 

comparing different minimization methods in combination 

with data reuploading techniques. The impact of data 

reuploading on the performance of various minimization 

methods remains largely unexplored. Further investigation 

into the interplay between data reuploading and different 

optimization techniques could potentially lead to more 

efficient and effective QML algorithms. Besides, while 

previous studies have investigated the effects of data 

reuploading on QML algorithms, there is a lack of research 

focusing on random datasets that mirror real-world 

scenarios [37]. By evaluating the performance of QML 

algorithms on random datasets that closely resemble actual 

data, we can gain valuable insights into their robustness and 

generalization capabilities, ultimately leading to the 

development of more efficient and reliable QML 

techniques. Our preliminary findings suggest that the 

proposed methodology demonstrates potential when applied 

to a randomized dataset, warranting further investigation to 

validate its efficacy and generalizability [38]. In addition, 

 
FIGURE 1.  Quantum machines make the bridge between quantum 
computing and machine learning for a world of possibilities, 
including but not limited to cybersecurity, weather, healthcare, 
finance, and agriculture. 



 

we propose investigating an alternative cost function to 

further assess the performance and robustness of the 

classifier [39]. Specifically, we suggest employing the trace 

distance cost function to gain deeper insights into the 

classifier's behavior. By examining the classifier's response 

to this distinct cost function, we aim to better understand its 

adaptability and potential for generalization across different 

optimization criteria. This exploration will provide valuable 

information regarding the classifier's versatility and its 

ability to maintain effectiveness under varying conditions. 

     This research focuses on performing a comprehensive 

comparative evaluation of two different cost functions 

including fidelity and trace distance cost function and four 

distinct optimization techniques including L-BFGS-B, 

COBYLA, Nelder-Mead, and SLSQP methods, applied to a 

single-qubit classifier. Our exploration delves into two 

contrasting types of datasets: one that remains constant and 

another that embodies randomness. Furthermore, we 

explore two specific classification challenges —-linear and 

non-linear patterns— to conduct a comprehensive 

comparison that encompasses all pertinent aspects. This 

approach allows us to explore the details of these problems 

and gain deeper insights into their inherent properties and 

nuances. 

    The structure of the paper unfolds as follows: Section 2 

is dedicated to a comprehensive review of the relevant 

literature. Here, we introduce and compare different cost 

functions applicable to the quantum classifier, setting the 

stage for a nuanced understanding of their impacts and 

implications. Moving to Section 3, we elucidate the concept 

of a single-qubit quantum classifier, demonstrating its 

capability as a universal approximator for any given 

classification function. This section underscores the 

versatility and potential of single-qubit systems in QML. In 

section 4, we navigate through the intricacies of four 

different minimization methods tailored for the quantum 

classifier. This comparative analysis aims to shed light on 

the effectiveness and efficiency of each method, 

contributing to a deeper comprehension of their operational 

dynamics and suitability for specific tasks. Section 5 

analyzes the performance of single-qubit classifiers across 

various linear and non-linear classification tasks, such as 

circle and line patterns. The paper demonstrates the 

practical applicability and adaptability of data re-uploading 

techniques in QML, employing diverse cost functions and 

minimization strategies. 

II.  QUANTUM CLASSIFIER 

Quantum computing manipulates quantum systems to 

enhance information processing, leveraging superposition to 

simultaneously operate on multiple states for faster and more 

complex computation. At its core is the qubit, represented in 

a two-dimensional Hilbert space, with operations governed 

by quantum gates. These gates, essential for altering quantum 

states, must be unitary to ensure the conservation of 

probability, a fundamental principle of quantum dynamics 

[5]. 

    The framework of a quantum circuit unfolds in three key 

phases: encoding classical data into quantum format, 

manipulating the quantum state using quantum gates, and 

measuring the quantum state post-transformation. This 

process transitions from preparing an initial quantum state, 

through strategic alterations via quantum gates affecting 

computation outcomes, to a final probabilistic 

measurement—distinguishing quantum computing's potential 

and challenges from deterministic classical computing. 

    Achieving optimal performance in quantum computing 

requires a nuanced understanding of these phases, including 

the initial state preparation, the strategic selection and 

application of quantum gates, and the final measurement 

process. Each component must be meticulously optimized to 

perform specific tasks, such as classification, highlighting the 

intricate interplay between quantum mechanics and 

computational logic in the design and execution of quantum 

algorithms. 

A. RE-UPLOADING CLASSICAL INFORMATION AND 
PROCESSING 

The integration of classical information into quantum 

computing represents a groundbreaking approach to data 

processing and analysis. This process begins with the 

strategic encoding of data into the initial wave function’s 

coefficients within a quantum circuit [40]. In simpler terms, 

data is initially uploaded through the manipulation of qubits 

via rotational operations on a computational basis. This 

foundational step sets the stage for executing sophisticated 

quantum algorithms, including those designed for 

classification tasks. 

    The most successful programming paradigm in machine 

learning is predicated on artificial neural networks, which 

represent a highly abstracted and simplified model inspired 

by the human brain [41]. An artificial neural network 

comprises interconnected units or nodes known as artificial 

neurons, often arranged in layers [27]. These networks are 

characterized by their diverse architectures and the ability to 

learn from data through the adjustment of a vast network of 

parameters during the training phase. Among the various 

types of neural networks, feed-forward neural networks 

exemplify the process of sequential data processing, where 

input data is transformed layer by layer, simulating a form of 

data re-uploading at each neuron. This mechanism of data re-

uploading and processing in ANNs provides a parallel to the 

innovative approach of constructing a universal quantum 

classifier using a single qubit. The essence of this quantum 

computing strategy lies in the repeated introduction of 

classical data at different stages of computation, analogous to 

the data processing in a single hidden layer neural network. 

This process can be visualized diagrammatically, as shown in 

figure 2. In figure 2(a), the neural network architecture is 

depicted, where data points are fed into individual processing 



 

units, analogous to neurons within the hidden layer. These 

neurons collectively process these input data, culminating in 

the activation of a final neuron responsible for constructing 

the output for subsequent analysis. Similarly, in the quantum 

domain, the single-qubit classifier incorporates data points 

into each stage of the computation through unitary rotations. 

These rotations are not isolated; rather, each one builds upon 

the transformations applied by its predecessors, effectively 

integrating the input data multiple times throughout the 

computation. The culmination of this process is a quantum 

state that encapsulates the computational outcome. 

    To construct a universal quantum classifier with only a 

single qubit, a complex integration of data input and 

computational processing within a single quantum circuit is 

crucial. We achieve this objective through the deployment of 

parametrized quantum circuits (PQCs). In these circuits, 

certain rotational angles are meticulously adjusted based on 

classical parameters, which are refined through an 

optimization process aimed at minimizing a specifically 

defined cost function. 

    The cost function plays a pivotal role in the operational 

efficacy of the quantum classifier. It quantitatively assesses 

the circuit's performance in segregating data points into 

distinct categories, which are represented as separate regions 

on the Bloch sphere. Each of these regions corresponds to a 

different class, and the classifier's goal is to assign data points 

to the correct class based on their features. 

B. MEASUREMENT 

In the realm of quantum computing, a quantum circuit is 

distinguished by its processing angles  and associated 

weights , leading to the generation of a final state . The 

measurement outcomes from this state are used to compute a 

classification error metric, defined as . The goal is to 

minimize this error metric by adjusting the circuit’s classical 

parameters, a process that can be effectively managed 

through various supervised machine learning techniques. 

    At the heart of using quantum measurement for 

classification tasks lies the approach of optimally aligning 

observed outputs with specific target classes. This alignment 

is primarily facilitated by the principle of maximizing 

orthogonality between the output states, ensuring clear 

distinction [42]. In the context of binary (dichotomous) 

classification, this means categorizing each observation into 

one of two predefined classes—referred to here as Class A 

and Class B. The decision criterion involves comparing the 

probabilities of observing the quantum state  for 

outcome 0 and  for outcome 1. If , the 

observation is assigned to class A; otherwise, it falls under 

class B. To enhance this binary classification scheme, one 

can introduce a bias , adjusting the threshold for 

classification such that observation is deemed part of Class A 

if  is greater than , and Class B if it falls below. The 

value of  is chosen to maximize classification accuracy on a 

training dataset. The effectiveness of this approach is then 

confirmed through evaluation on a separate validation 

dataset. 

    Enhanced classification accuracy is realized by 

determining the overlap between the final quantum state and 

a collection of predefined label states, specifically selected 

for their pronounced orthogonality. This technique aims to 

identify points of maximal orthogonality within the Bloch 

sphere, thereby facilitating classification. This approach is 

adept at accommodating both linear and nonlinear 

classification patterns, as depicted in the illustrative figure 3. 

Figure 3(a) demonstrates the geometric representation of two 

target states within the Bloch sphere, showcasing the 

assignment of data points to maximally orthogonal target 

states for precise classification. Figure 3(b) depicts the 

classification of data points into two distinct classes. In figure 

3(c), a Non-Linear Classification Problem (NLCP) is 

presented. Here, data points are classified as either inside or 

outside a circle, with each classification corresponding to a 

different target state. Finally, figure 3(d) demonstrates a 

Linear Classification Problem (LCP). In this scenario, data 

points are classified as either above or below a line, again 

each classification corresponds to a unique target state. 

    Viewed through a geometric lens, the single-qubit 

classifier operates within a 2-dimensional Hilbert space —the 

Bloch sphere—where data encoding and classification 

decisions are delineated through specific rotational 

parameters. Any operation  is a rotation on the Bloch 

sphere surface. From this viewpoint, any point can be 

classified using just one unitary operation. Consequently, we 

can transfer any point to another point on the Bloch sphere 

by precisely selecting the rotation angles. However, when 

dealing with multiple data points, a single rotation may not 

suffice due to differing optimal rotation requirements. The 

solution lies in introducing additional layers into the quantum 

circuit, enabling distinct rotation and fostering a richer 

feature map. Within this enhanced feature space, data points 

can be effectively segregated into their respective classes 

based on their positioning within the Bloch sphere's regions, 

 
FIGURE 2.  Comparison of the architectures between a neural 
network and a single-qubit quantum classifier with data re-
uploading. (a)  Depicts the structure of a classical neural network, 
where neurons in each layer receive and integrate inputs from all 
neurons in the previous layer. Conversely, (b)  Illustrates an 
architecture for a quantum classifier using a single qubit and data 
re-uploading. In this setup, the qubit's state is determined not only 
by the preceding processing units but also by classical input data 
that is repeatedly introduced. The output is a quantum state that 
encodes the cumulative effects of multiple rounds of data 
uploading and quantum processing steps. 



 

thereby enabling a sophisticated and adaptable approach to 

quantum classification.   

1) FIDELITY COST FUNCTION 

The goal is to align the quantum states ( ) as 

closely as possible to a designated target state on the Bloch 

sphere, as outlined in [1]. This alignment can be 

quantitatively assessed by measuring the angular distance 

between the labeled state and the data state, using the metric 

of relative fidelity [43].  The primary objective focuses on 

maximizing the average fidelity between the quantum states 

produced by the circuit and the label states corresponding to 

their respective classes. To facilitate this, a cost function is 

introduced and mathematically formulated as Equation 1: 

                         

               (1) 

 

where |�̃�𝑠⟩ is the correct label state of the 𝜇 data point, which 

will correspond to one of the classes. 

2) TRACE DISTANCE COST FUNCTION 

In quantum information theory, quantifying the dissimilarity 

between two quantum states is a fundamental problem. 

Various distance measures have been proposed, each with its 

unique properties and applications. One such measure is the 

trace distance, which captures the distinguishability between 

two quantum states [43]. Perez-Salinas et al. have analyzed 

the fidelity cost function with data re-uploading [1]. 

However, the authors do not consider the case of the trace 

distance cost function, which is what we focus on in this 

section. We will explore the definition and properties of the 

trace distance, particularly in the context of single-qubit 

systems, and discuss its potential as a cost function for 

quantum classifiers. 

    Despite the different mathematical formulations of trace 

distance and fidelity, these two measures share many similar 

properties and are widely used in the quantum computing and 

quantum information community. However, depending on 

the specific application, one measure may be more 

convenient or easier to work with than the other. This 

versatility and widespread adoption of both trace distance 

and fidelity in the field motivates our decision to discuss and 

compare these two important distance measures in the 

context of quantum classifiers. The trace distance between 

quantum states 𝜌 and 𝜎 can be defined as,
 
 

 

                                                (2) 

     

    The trace distance between two single-qubit states, 

represented by their respective Bloch vectors  and , is 

equal to one-half of the Euclidean distance between these 

vectors on the Bloch sphere. [43] 

 

 

                                                     (3) 

 

    This relation provides a geometric interpretation of the 

trace distance for single-qubit systems, linking it to the 

intuitive notion of distance in three-dimensional space. 

III.  UNIVERSALITY OF THE SINGLE-QUBIT 
CLASSIFIER 

A key challenge in Quantum Machine Learning (QML) 

involves creating quantum circuits that efficiently handle 

complex tasks like classification without excessive use of 

quantum resources. The Universal Approximation Theorem 

(UAT) [44] is crucial for tackling this issue, demonstrating 

that a single-layer neural network with an appropriate 

activation function can approximate any continuous function 

to a desired accuracy, assuming enough hidden neurons are 

available. This UAT finds a compelling parallel in the 

quantum computing domain, particularly when considering 

the dynamics of quantum circuits. Here, the classical 

activation function is analogously performed by a unitary 

rotation acting upon a qubit. Specifically, a single-qubit 

quantum classifier, enhanced by the technique of data re-

uploading, emerges as a universal approximator for any 

conceivable classification function. This universality hinges 

on the frequency of data re-uploading throughout the circuit’s 

span [1], underscoring that even a solitary qubit is capable of 

encoding and processing multifaceted high-dimensional data. 

This is achieved through the execution of multiple rotations, 

each characterized by distinct angles and weights. The 

culmination of these processes is a final quantum state, which 

is then analyzed against a predefined target state correlating 

to each class. Optimization of the circuit's parameters is 

 

FIGURE 3.  The single qubit classifier is trained to assign data 
points to one of two maximally orthogonal states on the Bloch 
sphere (a), denoted as |0⟩ and |1⟩, which represent two distinct 
classes. Subplot (a) illustrates these target states for binary 
classification. Subplot (b) shows the classified data points mapped 
onto the Bloch sphere. Subplot (c) demonstrates a non-linear 
classification pattern, represented by a circle, with color-coded 
data points indicating their class assignments. Similarly, subplot 
(d) depicts a linear classification pattern, represented by a line, 
with color-coded data points denoting their respective classes. 



 

pursued through the minimization of a cost function, which is 

indicative of the fidelity or trace distance between the 

comparative states. 

    By establishing the UAT within the context of quantum 

classifiers, a robust theoretical foundation is laid, alongside 

practical guidelines for the design and implementation of 

quantum circuits adept at sophisticated and non-linear 

classification tasks with minimal quantum resource 

expenditure. This breakthrough not only forges a theoretical 

link between quantum circuits and neural networks but also 

paves the way for innovative approaches in QML. Through 

this lens, quantum circuits are envisioned not merely as 

computational tools but as entities with the potential to 

parallel, and possibly surpass, the capabilities of their 

classical neural network counterparts, inspiring a new wave 

of methodologies in the realm of QML. 

IV.  OPTIMIZATION METHODS 

In practice, deploying a parameterized quantum classifier 

involves a process of minimizing within the parameter space 

that delineates the circuit's configuration. The process is 

often termed a hybrid algorithm, denoting the symbiotic 

relationship and advantages derived from combining 

quantum logic  and classical logic. In particular, the 

ensemble of angles ( ) and weights ( ) define a parameter 

space that requires systematic exploration to achieve the 

minimization of . 

The occurrence of local minima is unavoidable [2]. The 

arrangement of rotation gates results in a intricate 

multiplication of independent trigonometric functions, 

suggesting that our problem is characterized by a widespread 

distribution of minima. 

The primary challenge boils down to minimizing a 

function that is defined by a vast array of parameters. In the 

case of a single-qubit classifier, the total number of 

parameters can be expressed as , where represents the 

problem's dimension (that is, the dimension of ), and signifies 

the number of layers. Among these parameters, three are 

rotational angles, while the rest pertain to the weight [1]. To 

identify the most effective solution, we evaluate the 

performance of four distinct minimization techniques: the L-

BFGS-B method, the COBYLA method, the Nelder-Mead 

method, and the Sequential Least Squares Programming 

(SLSQP) method. 

The key challenge in optimizing a single-qubit classifier 

involves minimizing a function across a complex parameter 

space, calculated as  , where "d" is the problem's 

dimension and "N" the number of layers. Also in addition, 

we need to consider rotational angles and the weight ( ) 

correspond to the dimension [1]. To discover the optimal 

solution, we delve into the efficiency of four diverse 

minimization strategies: the L-BFGS-B, COBYLA, Nelder-

Mead, and Sequential Least Squares Programming (SLSQP) 

methods. 

A. L-BFGS-B METHOD 

The L-BFGS-B technique, part of the quasi-Newton 

optimization methods, refines the Broyden–Fletcher–

Goldfarb–Shanno (BFGS) approach by efficiently using 

limited computer memory [45]. Its design excels in handling 

optimization tasks involving numerous variables, offering a 

linear memory usage advantage, making it highly effective 

for large-scale problems [46]. 

    The L-BFGS-B method is widely recognized as a 

cornerstone technique across various advanced applications 

in the field of graphics [47, 48]. It specializes in minimizing a 

scalar function of one or several variables by initiating with a 

preliminary estimate of the optimum value. Through iterative 

refinement, it progressively improves upon this initial 

estimate to approach an optimal solution. The method 

employs function derivatives to determine the steepest 

descent's direction and to approximate the function's Hessian 

matrix (its second derivative), showcasing exceptional 

efficiency in matrix-vector multiplication operations [49]. 

B.  CONSTRAINED OPTIMIZATION BY LINEAR 
APPROXIMATION METHOD 

COBYLA (Constrained Optimization BY Linear 

Approximation) is an optimization algorithm designed to 

minimize a scalar objective function that depends on one or 

more variables, subject to constraints [50, 51]. One of the key 

features of COBYLA is that it does not require the 

calculation of derivatives, such as gradients or Hessians, of 

the objective function or constraints. This makes COBYLA 

particularly useful in situations where the derivatives are 

unknown, unreliable, or computationally expensive to obtain 

[50]. By relying on linear approximations of the objective 

function and constraints, COBYLA can effectively navigate 

the optimization landscape and find solutions even in the 

absence of explicit derivative information. 

COBYLA has been effectively utilized in quantum 

computing, especially as a classical optimization routine 

within Variational Hybrid Quantum-Classical Algorithms 

(VHQCAs) [52]. These algorithms employ a parameterized 

quantum circuit, or ansatz, which is refined through a 

dynamic interchange between a classical computer and a 

quantum device. The classical computer adjusts the ansatz's 

parameters to minimize a cost function, which the quantum 

device efficiently evaluates. Through iterative updates based 

on the cost function outcomes, the VHQCA aims to discover 

the most effective ansatz configuration for specific problems. 

The derivative-free characteristic of COBYLA makes it 

particularly advantageous for this setting, where the cost 

functions often lack easily computable or analytically defined 

derivatives. 

 

 

C.  NELDER-MEAD METHOD 

 The Nelder-Mead algorithm, introduced by John Nelder and 

Roger Mead in 1965, is a widely used direct search method 



 

for unconstrained optimization problems [53].  The algorithm 

operates by maintaining a simplex of n+1 points in an n-

dimensional space, iteratively moving the simplex towards 

the optimal solution through a series of transformations, 

including reflection, expansion, contraction, and shrinkage 

[53].  

     

    Recent studies have focused on enhancing the Nelder-

Mead algorithm to improve its efficiency and adaptability. 

Gao and Han [54]proposed an implementation of the Nelder-

Mead algorithm with adaptive parameters, which can 

automatically adjust the parameter values based on the 

optimization progress. This adaptive approach has been 

shown to improve the algorithm's convergence speed and 

solution quality [54]. 

    Its capacity to address problems in which derivative 

information is not readily accessible renders it a favorable 

option for numerous applications in QML. However, it is 

essential to conduct comprehensive evaluations to scrutinize 

the method's accuracy, efficiency, and sensitivity to the initial 

guess for each unique application [35, 55]. 

D. SEQUANTIAL LEAST SQUARES PROGRAMMING 
METHOD 

The Sequential Least Squares Programming (SLSQP) 

method is an optimization technique that minimizes functions 

while adhering to specific constraints [56]. It is based on 

Sequential Quadratic Programming (SQP), which simplifies 

the optimization problem into a series of smaller, more 

manageable quadratic subproblems. In each subproblem, a 

quadratic approximation of the objective function and 

constraints is constructed using a second-order parabolic 

curve to model the function’s behavior near a specific point. 

SLSQP updates this approximation using a quasi-Newton 

method.  

    Additionally, SLSQP applies a least-squares method to 

solve these quadratic subproblems, striving to minimize the 

total squared deviations between the approximation and 

actual function values. This method can handle both equality 

and inequality constraints, including variable bounds, by 

integrating a penalty function that imposes additional costs 

for any constraint or bound violations. SLSQP ensures 

efficient convergence by terminating the optimization 

process upon meeting a predefined convergence criterion, 

typically related to changes in the objective function value or 

the gradient vector's norm. This safeguard prevents indefinite 

computations, ensuring timely solutions. 

  Local minima are common challenges in both neural 

networks and quantum classifiers due to their complex 

mathematical structures—neural networks with compounded 

nonlinear functions and quantum circuits with prevalent 

trigonometric functions. This complexity increases the 

likelihood of encountering local minima during optimization. 

Moreover, with smaller training sets, the choice of 

optimization method is crucial. For instance, the Nelder-

Mead method is noted for its robustness, particularly its 

lower susceptibility to local minima. 

 

It is also critical to recognize that minimization methods are 

sensitive to noise, which can significantly impact their 

effectiveness, especially in practical quantum computing 

applications [52]. 

V. RESULT 

In the field of QML, no comparative analysis has been 

conducted to evaluate the performance of four minimization 

methods- L-BFGS-B, COBYLA, Nelder-Mead, and SLSQP- 

on both fix and random datasets. Recognizing these gaps in 

the current research landscape, we introduce a novel 

approach that incorporates the trace distance cost function 

alongside the well-established fidelity cost function. Our 

study also extends its scope to include linear classification 

patterns, providing a more comprehensive understanding of 

the capabilities and limitations of quantum classifiers. 

    In this paper, we introduced two main cost functions 

(Fidelity and Trace distance), with two classification patterns 

(line and circle), as well as four minimization methods (L-

BFGS-B, COBYLA, Nelder-Mead, and SLSQP).  We 

concentrate on straightforward binary classification 

problems, such as distinguishing between circular and linear 

patterns. These tasks serve as benchmarks to thoroughly 

assess the performance of our classifiers and gain a 

meaningful understanding of their efficacy. 

    In our study, we meticulously construct a diverse array of 

algorithms by integrating various cost functions, classifiers, 

patterns, and minimization methods, aiming for a 

comprehensive evaluation of their capabilities, as shown in 

figure 4. To fine-tune these algorithms, we employ two 

distinct datasets: one consisting of fix data points and another 

comprising entirely random data points. This approach 

allows us to adjust the free parameters  and  across each 

layer effectively. Recognizing the limitations of fix datasets 

in mirroring complex real-world phenomena, we introduce a 

completely random dataset to challenge our classifier's 

adaptability and robustness. To account for the inherent 

variability of random data, we conduct each simulation 20 

times, deriving an average accuracy rate to ensure statistical 

significance and reliability. 

    Central to our analysis is the application of these 

algorithms within the framework of a single qubit classifier, 

laying the groundwork for our comprehensive examination 

of each algorithm's performance. We specifically focus on 

benchmarking a selection of classifiers across varying 

numbers of layers, with a particular emphasis on 

configurations comprising five layers. This choice is 

predicated on the hypothesis that such an arrangement may 

unlock superior levels of performance and accuracy. 

    The subsequent sections delve deeper into this exploration, 

providing detailed insights into the performances of specific 

algorithms when implemented using single-qubit classifiers 



 

with the innovative technique of data re-uploading. This 

methodical approach not only enhances our understanding of 

the single-qubit classifier's potential but also sets the stage for 

future advancements in the field of QML, spotlighting the 

critical role of algorithmic diversity and adaptability in 

navigating the complexities of quantum data classification.  

A.  EVALUATING NON-LINEAR AND LINEAR 
CLASSIFICATION APPROACHES FOR FIDELITY IN FIX 
AND RANDOM DATASETS 

We generate a random dataset for circle classification pattern 

on a plane with coordinates  with  

defined by a specific equation , aiming to 

classify these points based on whether they fall inside or 

outside a circle of radius .  The radius is chosen in a 

way that ensures equal areas for the regions inside and 

outside the circle. This setup results in a balanced dataset, 

where randomly assigning labels to data points would yield a 

50 percent accuracy rate by chance. 

    In our study, we devised a methodology to assess the 

performance of a single-qubit classifier across various 

conditions by constructing a training dataset ranging from 1 

to 50 randomly selected entries. The classifier's efficacy was 

then evaluated using a comprehensive test dataset consisting 

of 4000 points. To ensure uniformity across our experiments, 

a consistent seed was utilized for generating all data points in 

scenarios with fix data. Conversely, for analyses involving 

random data, data points were generated entirely at random 

for each of the 20 iterations to ascertain the average accuracy. 

We employed four different minimization methods to 

determine their effectiveness in maximizing accuracy for the 

same dataset, evaluated against two cost functions. This 

approach allowed us to identify the method that yields the 

highest accuracy with an equivalent number of training 

samples. 

    To facilitate our analysis, we generated a random dataset 

for a line classification problem, where the objective was to 

classify points on a plane, defined by  with 

 based on their position relative to a line defined 

by the equation . The design of the line's function 

ensured that the probability of a data point being classified 

above or below it was equally likely, thus establishing a 

baseline success rate of 50% for random data point 

classification.  To assess the performance of the single-qubit 

classifier, a training dataset containing a varying number of 

random samples, ranging from 1 to 50, is generated. The 

classifier's effectiveness is then evaluated using a fixed test 

dataset and a random test dataset, each comprising 4000 data 

points. 

    Before delving into the accuracy metrics of the 32 unique 

scenarios depicted in figure 4, we embarked on a preliminary 

analysis to identify an appropriate number of training 

samples and layers. This preparatory step was crucial not 

only for establishing a consistent baseline for comparing 

training and test accuracies across various configurations but 

also for ensuring that our simulations remained feasible on 

our desktop computer with limited configurations. As 

illustrated in figures A1 and A2 in the Appendix, we 

conducted a series of runs with our algorithm, varying the 

number of layers from 1 to 5 and using up to 250 training 

samples, to determine the conditions under which our 

algorithm would reach a test accuracy around 90%. This 

exploration led us to conclude that training samples ranging 

from 60 to 250 and 5 layers were suited for our studies. To 

maintain a uniform evaluation framework, we subsequently 

used these values for all simulated cases.   

1) NON-LINEAR CLASSIFICATION PATTERN (NLCP) 
FIDELITY FOR FIX AND RANDOM DATASETS: 

Figure 5 illustrates a comparison of four distinct optimization 

techniques, namely L-BFGS-B, COBYLA, Nelder-Mead, 

and SLSQP, applied to the task of classifying the circle 

pattern. The comparison evaluates both training and test 

accuracies using a fix dataset of 4000 test samples and 5 

layers.  

 
FIGURE 4.  Schematics of 32 different cases are studied in this paper. 
It includes two cost functions, two classification patterns, and four 
minimization methods under two fix and random datasets. The 
detailed analysis and findings related to these methodologies are 
systematically organized in the manuscript under sections A.1, A.2, 
B.1, and B.2, providing a structured overview of our approach and 
results. 



 

Initially, all algorithms demonstrate a perfect training 

accuracy of 100% with just a single sample, a result that 

aligns with expectations. However, as we increase the sample 

size, a divergence in performance becomes evident for these 

four minimization methods. The L- BFGS-B method 

maintains a training accuracy close to 90%, showcasing its 

robustness against overfitting. In contrast, COBYLA, Nelder-

Mead, and SLSQP show significant variability and a decline 

in training accuracy, indicating a susceptibility to overfitting. 

Specifically, the test accuracy for these three methods 

displays considerable fluctuations, with the Nelder-Mead 

method experiencing a pronounced dip below 50% accuracy 

when utilizing 200 training samples. This point marks a 

notable decrease in performance for COBYLA, Nelder-

Mead, and SLSQP, possibly hinting at optimization 

challenges such as becoming trapped in local minima when 

handling larger datasets. Interestingly, the peak accuracy for 

COBYLA, Nelder-Mead, and SLSQP is achieved with 

merely 50 samples, beyond which overfitting becomes a 

significant issue. This observation suggests that, unlike L-

BFGS-B, which requires a minimum of 100 samples to 

achieve the accuracy of 92%, the other three methods can 

attain over 95% accuracy with only 50 samples. L-BFGS-B 

does not reach this high accuracy level at 100 samples, and 

its performance slightly declines with an increase in training 

samples after 150 training samples. This analysis highlights 

the critical importance of carefully selecting the number of 

training samples based on the minimization method used. 

The right choice can effectively prevent overfitting, thereby 

enhancing classification accuracy. This insight is crucial for 

optimizing machine learning models and ensuring their 

generalizability and efficiency in practical applications.    

    Figure 6 delves into the accuracy of these four distinct 

minimization methods —L-BFGS-B, COBYLA, Nelder-

Mead, and SLSQP— when applied to a fidelity cost function 

and a random dataset for circle classification. This analysis 

underscores a consistent trend across all methods: an initial 

increase in test accuracy corresponding to the rise in the 

number of training samples, yet fails to surpass a peak 

accuracy of 90%. This trend highlights the inherent 

challenges faced by these minimization methods when 

dealing with random datasets. In the L-BFGS-B method as 

depicted in figure 6(a), showcases a notable performance, 

achieving its highest test accuracy of 88.8% with 35 training 

samples.  This point also marks the narrowest gap of 5% 

between training and test accuracy, indicating a relatively 

high level of model efficiency and generalization at this 

sample size. However, as the analysis progresses, it becomes 

apparent that increasing the number of training samples 

beyond this optimal point does not translate to improved 

performance. The gap between the train and test accuracy 

remains notably constant at around 10% even as the sample 

size is increased to 70 training samples. Transitioning to the 

COBYLA method, as depicted in figure 6(b), a different 

performance pattern emerges. Contrary to L-BFGS-B, 

COBYLA achieves its best test accuracy at 84.8% with a 

higher training sample equal to 70. This method experiences 

fluctuations, yet it is noteworthy that the gap between 

training and test accuracies exhibits a decreasing trend, 

suggesting a gradual improvement in model generalization 

compared to the initial stability seen with L-BFGS-B. Figure 

6(c) focuses on the Nelder-Mead method, highlighting a 

decrease in the gap between training and test accuracies as 

the number of training samples increases, culminating in a 

maximum accuracy of 86.9% with 60 training samples. 

Figure 6(d) examines the SLSQP method, which shows an 

increase in test accuracy up to 50 training samples before 

demonstrating a decline in both training and test accuracies. 

This shows the SLSQP method is more prone to overfitting. 

The SLSQP method reaches a maximum accuracy of 86.7% 

when applied to a dataset of 50 samples. These results, as 

detailed in Figure 6, provide vital insights into the 

performance of various minimization methods when working 

with a fidelity cost function and a random dataset. The 

diverse outcomes emphasize the importance of choosing an 

optimal number of training samples to prevent overfitting 

and enhance accuracy. This underlines the delicate balance 

needed to fully leverage these computational methods in 

practical scenarios. 

 
FIGURE 5.  Train and test accuracy of fidelity for the 5-layer model 
of circle classification and fix dataset for (a) L-BFGS-B, (b) 
COBYLA, (c) Nelder-Mead and (d) SLSQP minimization methods to 
represent A.1 category in figure 4. The inset image in subplot (c) in 
the graph shows a visualization of a circle classification task with 
the highest accuracy of 95% in the Nelder-Mead minimization 
method. 



 

2)  LINEAR CLASSIFICATION PATTERN (LCP) 

FIDELITY FOR FIX AND RANDOM DATASETS: 

Figure 7 illustrates a comparison of four different 

optimization techniques applied to the task of classifying line 

patterns, using fidelity-based cost function and the fixed 

dataset. The subplot (a) focuses on the performance of the L-

BFGS-B method. Here, the training accuracy starts at a 

perfect 100% and impressively remains above 97% even as 

the number of training samples increases. Conversely, the 

test accuracy initiates at a relatively lower rate of 62.2% with 

just a single sample yet it progressively improves, reaching 

approximately 95% accuracy with 75 training samples and 

slightly declines for larger training samples. An initial 

notable gap between the training and test accuracy is evident, 

but this gap diminishes significantly as the dataset expands 

with more training data, indicating an improvement in the 

model's ability to generalize from the training to the unseen 

test data. The subplot (b) depicts the results obtained using 

the COBYLA algorithm, which exhibits a performance 

pattern similar to that of the L-BFGS-B method, consistently 

achieving 100% accuracy on the training data. The accuracy 

on the test set starts at 66.9% and steadily improves as more 

training samples are added, ultimately reaching 95% when 

125 samples are used for training. The disparity between 

training and test set accuracies mirrors the pattern observed 

with the L-BFGS-B method, consistently manifesting across 

all training dataset sizes. The Nelder-Mead approach, shown 

in figure 7(c), achieves a notable test accuracy of 97.7% with 

125 training samples. The inset provides a graphical 

visualization of line classification using this minimization 

method at this specific point, illustrating that the line 

classification performance is exceptionally well. The 

visualization clearly demonstrates the method's effectiveness 

in accurately separating the data points into distinct classes, 

highlighting the Nelder-Mead method's precision and 

robustness in handling line classification tasks with a 

substantial number of training samples. Furthermore, the 

training and test accuracy curves show a notably smaller gap, 

converging to the same value with training sets of 100 and 

125 samples. The final subplot (d) evaluates the performance 

of the SLSQP method, which closely aligns with the results 

from the COBYLA method. The test set accuracy exhibits a 

progressive increase, rising from 62.7% to 96.6%. The 

disparity between the training and test accuracies is similar to 

that observed with the COBYLA method. In summary, all 

four optimization techniques demonstrate a reduction in 

overfitting as the training dataset size increases, ultimately 

achieving a test accuracy of at least 95% when training with 

125 samples for this line classification task.  

    Figure 8 showcases an analysis of the classification 

accuracy obtained using the same minimization methods 

across random datasets. Consistently, a rise in the number of 

training samples correlates with an increase in test accuracy 

across all methods evaluated. Notably, with just 50 training 

samples, all methods surpass the 90% accuracy threshold. 

Specifically, in figure 8(a), the L-BFGS-B method reaches 

the peak accuracy of 92.8% with 50 training samples. It was 

observed that as the number of samples increased, the 

disparity between train and test accuracies for the L-BFGS-B 

method began to narrow, although this gap persisted in being 

slightly wider than that observed in the other methods. Figure 

8(b) demonstrates that the COBYLA method, with the same 

number of samples, attains a superior accuracy of 93.5%. 

This suggests that COBYLA not only reaches high 

classification accuracy with a minimal dataset but also 

demonstrates better generalization compared to L-BFGS-B, 

as reflected by the narrower gap between its training and test 

accuracies. Figure 8(c) examines the Nelder-Mead method, 

showing its peak accuracy of 93% with 40 training samples, 

after which its accuracy slightly declines. Interestingly, the 

smallest disparity between training and test accuracies—only 

1.8%—occurs in 50 training samples. Despite slightly lower 

accuracy at this point, this smallest gap signifies that the 

Nelder-Mead method achieves a remarkable balance between 

learning from the training data and generalizing to unseen 

data, highlighting its efficiency and potential for precise 

model tuning. Figure 8(d) illustrates that the SLSQP method 

achieves an impressive peak test accuracy of 96.4% for line 

classification using a random dataset, attained with 45 

training samples. At this juncture, the discrepancy between 

training and test accuracies is notably small, indicating a high 

level of model precision and generalization. Like the Nelder-

Mead method, the SLSQP method exhibits a nonmonotonic 

increment in test accuracy as a function of training samples, 

 
FIGURE 6.  Train and test accuracy of fidelity for the 5-layer model 
of circle classification and random dataset for (a) L-BFGS-B, (b) 
COBYLA, (c) Nelder-Mead and (d) SLSQP minimization methods to 
represent A.1 category in figure 4. 



 

as indicated by the irregular slope of test accuracy. This 

fluctuation suggests that for these methods, adding more 

training samples does not straightforwardly translate to 

higher test accuracies, highlighting the complexity of 

optimizing model performance across different minimization 

techniques. 

 

    A comparison of Figures 5 and 7 reveals that the accuracy 

curves for line classification are more stable and consistent 

across all optimization techniques when compared to those 

for circle classification. The accuracy values for classifying 

circle patterns display greater variability and fluctuations 

than those observed in the line classification task. The 

observed differences in performance between circle and line 

classification could stem from several technical factors: (1) 

Line classification likely represents a more straightforward 

pattern that aligns better with the linear decision boundaries 

most classifiers are adept at identifying. In contrast, circle 

classification involves recognizing more complex, non-linear 

patterns, which can challenge the classifiers’ ability to 

generalize from the training data without overfitting or 

underfitting. (2) The algorithms applied for circle 

classification might be more prone to getting trapped in local 

minima due to the more intricate decision boundaries 

required to accurately classify circular patterns. This can 

hinder the optimization process, leading to increased 

fluctuations in classification accuracy as the model struggles 

to find the global optimum. (3) The differences in 

performance may also reflect the inherent adaptability of the 

algorithms to the specific types of classification tasks with 

the geometric properties. A comparative analysis of Figures 6 

and 8 indicates that the specific characteristics of the 

classification problem significantly affect the potential to 

attain higher accuracy with fewer samples. The fluctuations 

in the line classification pattern are less pronounced than 

those in the circle classification pattern. This observation 

underscores the importance of selecting appropriate 

optimization methods based on the complexity of the 

classification problem. 

B.  EVALUATING NON-LINEAR AND LINEAR 
CLASSIFICATION APPROACHES FOR TRACE 
DISTANCE IN FIX AND RANDOM DATASETS 

1) NLCP TRACE DISTANCE FOR FIX AND RANDOM 
DATASETS: 

Figure 9 showcases the effectiveness of the trace distance 

cost function in classifying circular patterns within a fix 

dataset. In subplot (a), the L-BFGS-B minimization method 

achieves its highest test accuracy at 79.2% with a dataset 

comprising 100 training samples. Subplot (b) examines the 

performance of the COBYLA method, which displays 

greater variability in training accuracy than L-BFGS-B but 

ultimately achieves a higher peak test accuracy of 84.6%, 

also with 100 training samples. Notably, COBYLA 

demonstrates enhanced generalization capabilities relative to 

other methods, as indicated by the narrower margin between 

its training and testing accuracies. This performance suggests 

that, when applied alongside the trace distance cost function, 

the COBYLA method is particularly adept at optimizing 

 
FIGURE 7.  Train and test accuracy of fidelity for the 5-layer model 
of line classification and fix dataset for (a) L-BFGS-B, (b) COBYLA, 
(c) Nelder-Mead and (d) SLSQP minimization methods to represent 
A.2 category in figure 4. The inset graph in subplot (c) shows the 
visualization of a line classification pattern with the highest 
accuracy of 97.7% in the Nelder-Mead minimization method. 

 

FIGURE 8.  Train and test accuracy of fidelity for the 5-layer model 
of line classification and random dataset for (a) L-BFGS-B, (b) 
COBYLA, (c) Nelder-Mead and (d) SLSQP minimization methods to 
represent A.2 category in figure 4. 



 

parameters for improved generalization to unseen testing 

data. An accompanying visualization within the inset 

illustrates the classification of circular patterns at this 

accuracy peak. In subplot (c), the analysis shifts to the 

performance of the Nelder-Mead method, which records its 

optimal test accuracy at 72.6% utilizing 60 training samples. 

This method exhibits signs of overfitting, a condition where 

the model learns the training data too closely and fails to 

generalize well to new, unseen data. Despite a narrowing gap 

between training and testing accuracies as the number of 

training samples grows, a concurrent decline in training 

accuracy is observed, which adversely affects the overall test 

accuracy. This pattern suggests a limitation in the Nelder-

Mead method's capacity to effectively handle the trace 

distance cost function, likely due to its inherent 

characteristics such as reliance on simplex-based 

optimization, which might struggle with the complexity of 

the trace distance landscape. Consequently, this method 

appears less suited for tasks requiring robust generalization 

from the trace distance cost function, particularly in scenarios 

demanding accurate classification of complex patterns with a 

limited dataset. In subplot (d), the focus turns to the SLSQP 

method which attains its peak test accuracy at 83.6% with a 

dataset of 100 training samples. The disparity between 

training and testing accuracy contracts by increasing the 

training samples, indicating an improvement in the model's 

ability to generalize from the training to the testing dataset. 

However, even at the point of 100 training samples, the gap 

between training and testing accuracies, while reduced, 

remains significant. This persistent gap suggests that while 

the SLSQP method is effective at learning and generalizing 

from the given data, there is still a margin for optimization to 

further bridge the difference in accuracies.  Each 

optimization technique successfully minimizes the cost 

function and attains perfect accuracy on the training set using 

a comparatively small number of samples. However, their 

performance varies considerably when it comes to 

generalizing to the test set. This highlights the crucial role 

played by the choice of optimization algorithm in 

determining the overall effectiveness of the model. In 

conclusion, when considering the fixed dataset and the trace 

distance cost function, the COBYLA method demonstrates 

superior performance in optimizing the parameters to 

generalize effectively to unseen test data. Compared to the 

other techniques evaluated, it necessitates fewer training 

samples to achieve satisfactory accuracy on the test set. 

    Figure 10 illustrates how the accuracy on both the training 

and test sets evolves as the number of training samples 

grows, specifically for the task of classifying circular patterns 

using the trace distance cost function, evaluated on a 

randomly generated dataset. Similar to all scenarios analyzed 

so far, a common pattern emerges where test accuracy begins 

at a relatively low level for all minimization methods but 

demonstrates a consistent increase as more training data is 

provided. This trend highlights the methods' capacity to 

effectively learn distinguishing features, thereby enhancing 

their ability to generalize to unseen data. Specifically, in 

subplot (a), the L-BFGS-B method illustrates impressive 

learning efficiency, with test accuracy exceeding 70% after 

incorporating just 40 training samples and achieving its 

highest test accuracy of 77.8% with 45 training samples. In 

subplot (b), the COBYLA method's performance is slightly 

lower compared to L-BFGS-B, plateauing at a test accuracy 

of 72.8% with 45 training samples. This performance 

indicates that while COBYLA may be susceptible to some 

degree of overfitting, it nonetheless achieves a reasonable 

level of generalization. Subplot (c) explores the Nelder-Mead 

method, which reaches its peak test accuracy of 75.1% with 

50 training samples. Subplot (d) utilizes the SLSQP method, 

which shows fluctuations in its training accuracy remaining 

above 80%. The test accuracy for SLSQP was enhanced 

significantly, reaching 74.6% with 50 samples. This 

fluctuation and eventual rise in test accuracy underscores the 

method's potential for optimizing classification tasks, despite 

the initial variability. In sum, the L-BFGS-B method stands 

out for achieving the highest test accuracy among the 

methods evaluated, requiring only 45 training samples to 

reach this optimum on a random dataset. Summarily, 

employing the trace distance cost function across these 

various minimization strategies yields test accuracy ranging 

from 65% to 78% on the random dataset, illustrating the 

function's effectiveness and the distinct performance 

capabilities of each minimization method. 

 
FIGURE 9.  Train and test accuracy of trace distance for the 5-layer 
model of circle classification and fix dataset for (a) L-BFGS-B, (b) 
COBYLA, (c) Nelder-Mead and (d) SLSQP minimization methods to 
represent B.1 category in figure 4. The inset graph in subplot (b) 
shows the visualization of a circle classification pattern with the 
highest accuracy of 84.6% in the COBYLA minimization method. 

 



 

2) LCP TRACE DISTANCE FOR FIX AND RANDOM 
DATASETS: 

Figure 11 offers a comparative analysis of the accuracy 

achieved by four different optimization methods when 

applied to a trace distance cost function for line pattern 

classification using a fixed dataset. Subplot (a) highlights the 

L-BFGS-B method, showcasing its high level of stability in 

training accuracy. The test accuracy shows a steady increase, 

reaching 91.8% with 100 training samples.  While there is a 

substantial gap between the accuracies of the training and test 

sets at the outset, this difference gradually narrows as more 

training samples are introduced.This highlights the L-BFGS-

B method's capacity to adapt and learn more complex 

patterns effectively, demonstrating robustness and in 

leveraging larger datasets for improved generalization. The 

subplot (b) illustrates the results obtained using the 

COBYLA method. In contrast to the L-BFGS-B approach, 

the accuracy on the training set shows greater fluctuations, 

even experiencing a drop to 56.9% at one instance before 

rebounding. The test accuracy follows a similar pattern to 

that seen in L-BFGS-B, beginning at 49.8% and increasing to 

87.4%. Once the training set size reaches 80 samples, both 

the training and test accuracies seem to reach a plateau, 

slightly below the 90% mark. In subplot (c), the Nelder-

Mead method starts with a modest test accuracy of 55.3%, 

which significantly improves to 87% with the addition of 60 

training samples demonstrating a similar trend as the L-

BFGS-B method. Initially, a pronounced gap exists between 

training and test accuracies, which persists until the dataset is 

expanded to include 80 training samples. Beyond this point, 

the sign of overfitting emerges, as demonstrated by a decline 

in training accuracy while test accuracy plateaus. For 100 

training samples, the test accuracy interestingly becomes 2% 

higher than the training accuracy, indicating a unique 

inversion where the model performs slightly better on unseen 

data than on the training set itself, a rare occurrence that may 

suggest the model has reached a point of optimization where 

it generalizes exceptionally well to new data.  The subplot (d) 

of  Figure 11 presents the results of the SLSQP method. 

Notably, this technique achieves the highest accuracy on the 

test set, reaching 93.3% using just 40 training examples. The 

SLSQP method appears to be the most appropriate choice for 

trace distance classification tasks, as it exhibits a smaller 

discrepancy between its performance on the training and test 

datasets. The inset provides a visual representation of the 

SLSQP's performance at this specific point. To summarize, 

all optimization methods demonstrate an upward trajectory in 

test accuracy as the size of the training dataset increases, 

suggesting enhanced generalization capabilities of the model. 

Among the four techniques evaluated, the SLSQP method 

seems to strike the most favorable balance between its 

performance on the training and test sets.  

        Figure 12 presents a comparison of different 

optimization techniques when applied to the task of 

classifying line pattern using a randomly generated dataset 

and a cost function based on trace distance. In subplot (a), we 

examine the performance of the L-BFGS-B method, which 

attains its peak test accuracy of 86.3% with 55 training 

samples. Before reaching this point, the method's test 

accuracy demonstrated considerable variability, oscillating 

between 70% and 80% as the number of training samples 

ranged from 20 to 50. However, a notable improvement 

occurs when the dataset is expanded to 55 training samples, 

at which the test accuracy leaps to 86.3%, effectively 

surpassing the earlier fluctuation band. This pivotal moment 

also marks the occurrence of the smallest gap between 

training and test accuracies, showcasing a significant 

enhancement in the model's ability to generalize from the 

training dataset to unseen data, thereby achieving an optimal 

balance at this specific training sample size. Subplot (b) 

delves into the efficacy of the COBYLA optimization 

method, which achieves its highest test accuracy of 86.8% 

with a relatively smaller dataset of 35 training samples. 

Beyond this optimal threshold, signs of overfitting become 

apparent, as both training and test accuracies start to decline. 

This pattern suggests that while the COBYLA method is 

highly effective up to a certain point, adding more training 

samples beyond this number paradoxically hampers the 

model's performance. The decline in accuracy indicates that 

the model begins to memorize the training data rather than 

learning to generalize, leading to a decrease in its ability to 

accurately predict outcomes on unseen data. This observation 

underscores the importance of identifying the ideal number 

of training samples to maximize the effectiveness of the 

COBYLA method without crossing into the territory of 

 
FIGURE 10.  Train and test accuracy of trace distance for the 5-
layer model of circle classification and random dataset for (a) L-
BFGS-B, (b) COBYLA, (c) Nelder-Mead and (d) SLSQP minimization 
methods to represent B.1 category in figure 4. 

 

 

 



 

overfitting. In subplot (c), the focus is on the Nelder-Mead 

optimization method, which shows some fluctuations in 

performance before reaching its maximum test accuracy. It 

successfully achieves a test accuracy of 88.1% with 40 

training samples. However, akin to the pattern observed with 

the COBYLA method, the Nelder-Mead method also sees a 

decline in both training and test accuracies when additional 

training samples are added beyond this optimal number. This 

decline serves as a clear indication of the onset of overfitting, 

suggesting that while the Nelder-Mead method can 

efficiently utilize a certain number of training samples to 

improve its predictive accuracy, exceeding this number leads 

to a reduction in model performance. In subplot (d), a more 

continuous and stable increase in test accuracy is observed 

with each increase in the number of training samples. This 

trend results in the highest test accuracy being recorded at 

88.3% with 55 training samples. Unlike the previous 

methods discussed, this subplot suggests a method that 

maintains its efficiency and ability to generalize well without 

showing immediate signs of overfitting up to this point. The 

gradual and consistent improvement in test accuracy 

highlights the method's effective learning curve and suggests 

an optimal balance between learning from the training data 

and applying this knowledge to unseen data. 

    Figure 13 offers a comparative analysis of the highest 

accuracies achieved for two distinct classification patterns – 

linear (line) and non-linear (circle) – across the four distinct 

minimization methods when applied to both random and fix 

datasets within the context of a fidelity cost function. The 

analysis reveals a notable trend: in circle classification tasks, 

the fix dataset consistently yields higher accuracies than their 

random counterparts for all tested minimization methods. 

This suggests that the inherent geometric complexities of 

non-linear patterns may align more closely with the simpler 

structure of fix datasets, thereby facilitating more accurate 

classification.  Similarly, for line classification, the fix 

dataset leads to enhanced accuracies with the L-BFGS-B and 

SLSQP methods, indicating these methods' effectiveness in 

leveraging structured data to accurately discern linear 

relationships. However, the random dataset achieves better 

accuracy when classified using the Nelder-Mead method. 

This could suggest that the Nelder-Mead method, known for 

its simplicity and direct search approach, might be 

particularly adept at navigating the stochastic nature of 

random datasets to identify linear patterns. Across all 

algorithms, the task of classifying non-linear patterns, 

especially within random datasets, emerges as inherently 

challenging. This complexity likely stems from the 

algorithms' varying abilities to parse and learn from the 

unpredictable variance found in random datasets, as well as 

the added difficulty of accurately modeling non-linear 

relationships. The findings underscore the critical importance 

of selecting the appropriate minimization method based on 

the dataset's nature and the classification task's geometric 

complexity to optimize classification accuracy. 

    Figure 14 provides the performance comparison of two 

distinct classification patterns—line and circle—across four 

different minimization methods when applied to both random 

 
FIGURE 11.  Train and test accuracy of trace distance for the 5-
layer model of line classification and fix dataset for (a) L-BFGS-B, 
(b) COBYLA, (c) Nelder-Mead and (d) SLSQP minimization methods 
to represent B.2 category in figure 4. The inset graph in subplot (c) 
shows the visualization of a line classification pattern with the 
highest accuracy of 93.3% in the SLSQP minimization method. 

 

 

 

 
FIGURE 12.  Train and test accuracy of trace distance for the 5-
layer model of line classification and random dataset for (a) L-
BFGS-B, (b) COBYLA, (c) Nelder-Mead and (d) SLSQP minimization 
methods to represent B.2 category in figure 4. 

 

 

 



 

and fix datasets, this time employing the trace distance cost 

function. A pivotal observation emerges when comparing the 

performance of circle classification with a fix dataset 

(circle/fix) against the fidelity cost function results presented 

in figure 13. It is evident that the accuracies achieved using 

the trace distance cost function are notably lower across all 

minimization methods compared to those obtained with the 

fidelity cost function. This discrepancy highlights the 

inherent challenges and differences in how each cost function 

interacts with the underlying data and the classification task 

at hand. The trace distance cost function, known for 

quantifying the distinguishability between quantum states, 

may present a more complex landscape for optimization, 

particularly when applied to classical data patterns such as 

lines and circles. This complexity could lead to lower 

classification accuracy as the minimization methods struggle 

to navigate the nuances of the trace distance landscape 

effectively. Such an observation underscores the importance 

of cost function selection in machine learning tasks, 

emphasizing that the choice of cost function can significantly 

impact the model's ability to learn and generalize from the 

data. The comparative analysis in figure 14 serves as a 

testament to the nuanced interplay between cost functions, 

dataset types (fix vs. random), and the geometric nature of 

the classification patterns, offering valuable insights into 

optimizing classification accuracy through strategic method 

and cost function selection. 

    In addition, the fix dataset achieves superior accuracy 

specifically when employing the COBYLA minimization 

method, indicating a unique synergy between COBYLA's 

optimization strategy and the structured nature of fix datasets 

for linear patterns. Conversely, for the random dataset, there's 

a notable trend where it consistently outperforms the fix 

dataset across all other minimization methods, suggesting 

that the stochastic characteristics of random datasets may be 

better suited to the optimization landscapes these methods 

navigate, particularly for linear classifications. In circle 

classification tasks, the random dataset not only demonstrates 

improved accuracy over the fix dataset for all minimization 

methods but also reinforces the observation that random 

datasets generally offer a more favorable context for the trace 

distance cost function across both classification patterns. This 

enhancement in accuracy with random datasets could be 

attributed to the trace distance cost function's sensitivity to 

the variances within the dataset, allowing for more effective 

differentiation and classification of non-linear patterns like 

circles when the data is less predictable. 

VI. CONCLUSION 

This work presents a pioneering investigation into enhancing 

quantum classifier performance through strategic data re-

uploading, exploring its impact across both linear and non-

linear classification paradigms. By integrating novel cost 

functions and employing various optimization methods, we 

significantly advanced the accuracy and robustness of 

quantum classifiers. Our approach, which leverages the 

unique properties of quantum mechanics, demonstrates 

substantial improvements over traditional models, 

particularly in handling complex patterns within minimal 

datasets. Through comprehensive comparisons across diverse 

datasets and classification tasks, we underscore the 

adaptability of our methodology to different learning 

scenarios, thereby offering a versatile tool for QML 

applications. 

    Our findings contribute to the theoretical foundations of 

QML and provide practical insights into the design and 

optimization of quantum classifiers. The exploration of 

different cost functions reveals their distinct impacts on 

model performance, highlighting the importance of careful 

selection based on the task at hand. Furthermore, our study 

illustrates the effectiveness of data re-uploading in enhancing 

model expressivity, a key factor in achieving high 

classification accuracy with fewer training samples. 

 
FIGURE 13.  comparison the result of test accuracy of the 5-layer 
model of fidelity cost function for linear and non-linear 
classification patterns for random and fix datasets in four 
minimization methods across 50 samples. 

 

 

 

 
FIGURE 14.  Evaluating of trace distance test accuracy of 5-layer 
model across 50 samples for linear and non-linear classification 
problems for random and fix datasets in four minimization 
methods. 

 

 

 



 

    Future work will focus on extending these methodologies 

to more complex quantum systems and exploring their 

application in broader quantum computing tasks. By 

continuing to unravel the capabilities of quantum classifiers 

and refining their design, we move closer to realizing the full 

potential of quantum computing in addressing some of the 

most challenging problems in machine learning and beyond. 

During the paper, we mention some of the results from 

computational speed which shows promising, and we will 

consider it for our next papers. 

    This research not only paves the way for further 

advancements in QML but also highlights the transformative 

impact quantum computing can have across various scientific 

and technological domains. 

 

APPENDIX 

Figure A1 illustrates the performance of a quantum classifier 

utilizing a fidelity cost function within a five-layer 

framework for circular pattern classification in a fix dataset, 

employing the L-BFGS-B optimization method. The analysis 

encompasses training data up to 250 samples to benchmark 

our algorithm against the findings from reference [1]. The 

diagram depicts training accuracy with a blue dashed line and 

test accuracy with a solid blue line, underscoring the 

algorithm's efficacy. A red dot highlights a notable 

benchmark from the reference, showing an 89% accuracy 

with 200 training samples, demonstrating parity with this 

published result. The inset provides a visual representation of 

the classification process. Notably, test accuracy begins at 

approximately 70%, rising impressively to 96% for a slightly 

expanded dataset of 210 samples. Remarkably, with as few 

as 60 training samples, the model achieves a test accuracy of 

91.8%, and the discrepancy between training and test 

accuracy diminishes with the inclusion of 90 samples. This 

observation underscores the efficiency of our approach, 

highlighting its capability to reach high accuracy levels 

without necessitating extensive training data. 

    Figure A2 showcases a systematic evaluation of a circular 

pattern classification model across a spectrum of 

architectural depths, ranging from 1 to 5 layers. The 

graphical analysis reveals that models with a solitary layer 

lag in performance compared to those with increased layer 

counts, marking a clear trend: as the number of layers 

escalates, so does the model's classification accuracy. 

Specifically, a single-layer setup achieves a peak accuracy of 

61.9%, whereas a more complex five-layer configuration 

significantly elevates this metric to 88.8%, even when limited 

to only 35 training samples. This observation underscores a 

critical insight—enhancing the model's depth systematically 

improves its predictive capabilities, a phenomenon consistent 

with the advantages afforded by the data reuploading strategy 

integral to our approach. Given this marked improvement in 

model efficacy with layer augmentation, the paper prioritizes 

an in-depth investigation and discourse on the five-layer 

model's architecture, focusing on its ability to optimize 

classification accuracy with efficient utilization of training 

data. 
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FIGURE A2.  Evaluate the test accuracy of fidelity for circle 
classification and random dataset for L-BFGS-B minimization 
method, ranging from 1 to 5 layers. 



 

Louisiana State University (2016). An author of over 100 peer-reviewed 

publications, Dr. Banad's research spans neuromorphic computing, energy-

efficient devices and circuits design, neural-inspired artificial intelligence 
acceleration, and material analysis for semiconductor technologies. He 

directs the Neuromorphic Intelligent Computing Systems (NICS) lab at 

OU, dedicated to advancing reliable, energy-efficient neuromorphic 
engineering from materials and devices to systems, algorithms, and 

applications.   

    

Sarah S. Sharif, (Chair of Young Professional in 

IEEE OKC), is an assistant professor in the School of Electrical and 
Computer Engineering at the University of Oklahoma since 2022. In 

addition, she is a distinguished faculty member at the Center for Quantum 

Research and Technology at the same institution. Before joining OU, she 
was a postdoctoral research associate at the University of Illinois Urbana-

Champaign. Her research during her Ph.D. focused on developing 

Stochastic Optimization and Machine Learning Techniques for Photonic 
Nanostructures and Quantum Optical Systems. She holds a Ph.D. in 

Electrical Engineering with a minor in Physics and two M.Sc. degrees in 

Natural Science (Physics) and Electrical Engineering. Additionally, she 
has a graduate certificate in Material Science. She leads the Quantum 

Nanophotonic Engineering Technology & System (QNETS) group at OU, 

focusing on the development of next-generation computing and sensing 
technologies through optical, quantum optical devices and system, 

including quantum machine learning, quantum information, and quantum 

communication.  
 

 

[1] A. Pérez-Salinas, A. Cervera-Lierta, E. Gil-Fuster, and J. I. 
Latorre, "Data re-uploading for a universal quantum classifier," 

Quantum, vol. 4, p. 226, 2020. 

[2] M. Cerezo, G. Verdon, H.-Y. Huang, L. Cincio, and P. J. Coles, 
"Challenges and opportunities in quantum machine learning," 

Nature Computational Science, vol. 2, no. 9, pp. 567-576, 

2022. 
[3] V. Dunjko and H. J. Briegel, "Machine learning & artificial 

intelligence in the quantum domain: a review of recent 

progress," Reports on Progress in Physics, vol. 81, no. 7, p. 
074001, 2018. 

[4] J. Biamonte, P. Wittek, N. Pancotti, P. Rebentrost, N. Wiebe, 
and S. Lloyd, "Quantum machine learning," Nature, vol. 549, 

no. 7671, pp. 195-202, 2017. 

[5] M. Schuld, I. Sinayskiy, and F. Petruccione, "An introduction 
to quantum machine learning," Contemporary Physics, vol. 56, 

no. 2, pp. 172-185, 2015. 

[6] M. Schuld, I. Sinayskiy, and F. Petruccione, "The quest for a 

quantum neural network," Quantum Information Processing, 

vol. 13, pp. 2567-2586, 2014. 

[7] M. Cerezo et al., "Variational quantum algorithms," Nature 
Reviews Physics, vol. 3, no. 9, pp. 625-644, 2021. 

[8] V. Havlíček et al., "Supervised learning with quantum-

enhanced feature spaces," Nature, vol. 567, no. 7747, pp. 209-
212, 2019. 

[9] E. Farhi and H. Neven, "Classification with quantum neural 

networks on near term processors," arXiv preprint 
arXiv:1802.06002, 2018. 

[10] J. Romero, J. P. Olson, and A. Aspuru-Guzik, "Quantum 

autoencoders for efficient compression of quantum data," 
Quantum Science and Technology, vol. 2, no. 4, p. 045001, 

2017. 

[11] K. H. Wan, O. Dahlsten, H. Kristjánsson, R. Gardner, and M. 
Kim, "Quantum generalisation of feedforward neural 

networks," npj Quantum information, vol. 3, no. 1, p. 36, 2017. 

[12] M. Larocca, N. Ju, D. García-Martín, P. J. Coles, and M. 

Cerezo, "Theory of overparametrization in quantum neural 

networks," Nature Computational Science, vol. 3, no. 6, pp. 
542-551, 2023. 

[13] L. Schatzki, A. Arrasmith, P. J. Coles, and M. Cerezo, 

"Entangled datasets for quantum machine learning," arXiv 
preprint arXiv:2109.03400, 2021. 

[14] M. S. Akter et al., "Case Study-Based Approach of Quantum 

Machine Learning in Cybersecurity: Quantum Support Vector 
Machine for Malware Classification and Protection," in 2023 

IEEE 47th Annual Computers, Software, and Applications 

Conference (COMPSAC), 2023: IEEE, pp. 1057-1063.  
[15] M. Grossi et al., "Mixed quantum–classical method for fraud 

detection with quantum feature selection," IEEE Transactions 

on Quantum Engineering, vol. 3, pp. 1-12, 2022. 
[16] M. Singh, C. Dhara, A. Kumar, S. S. Gill, and S. Uhlig, 

"Quantum artificial intelligence for the science of climate 

change," in Artificial Intelligence, Machine Learning and 
Blockchain in Quantum Satellite, Drone and Network: CRC 

Press, 2022, pp. 199-207. 

[17] G. S. M. Silva and E. L. Droguett, "Quantum machine learning 
for health state diagnosis and prognostics," in 2022 Annual 

Reliability and Maintainability Symposium (RAMS), 2022: 

IEEE, pp. 1-7.  
[18] D. J. Egger et al., "Quantum computing for finance: State-of-

the-art and future prospects," IEEE Transactions on Quantum 
Engineering, vol. 1, pp. 1-24, 2020. 

[19] A. Nammouchi, A. Kassler, and A. Theocharis, "Quantum 

Machine Learning in Climate Change and Sustainability: A 
Short," Quantum, vol. 1, p. 1, 2023. 

[20] B. Surendiran, K. Dhanasekaran, and A. Tamizhselvi, "A Study 

on Quantum Machine Learning for Accurate and Efficient 
Weather Prediction," in 2022 Sixth International Conference on 

I-SMAC (IoT in Social, Mobile, Analytics and Cloud)(I-SMAC), 

2022: IEEE, pp. 534-537.  
[21] A. Melnikov, M. Kordzanganeh, A. Alodjants, and R.-K. Lee, 

"Quantum machine learning: from physics to software 

engineering," Advances in Physics: X, vol. 8, no. 1, p. 2165452, 
2023. 

[22] F. Tacchino et al., "Variational learning for quantum artificial 

neural networks," IEEE Transactions on Quantum 
Engineering, vol. 2, pp. 1-10, 2021. 

[23] J. Pérez-Guijarro, A. Pages-Zamora, and J. R. Fonollosa, 

"Relation between quantum advantage in supervised learning 
and quantum computational advantage," IEEE Transactions on 

Quantum Engineering, 2023. 

[24] Z. Abohashima, M. Elhosen, E. H. Houssein, and W. M. 
Mohamed, "Classification with quantum machine learning: A 

survey," arXiv preprint arXiv:2006.12270, 2020. 

[25] D. K. Park, C. Blank, and F. Petruccione, "The theory of the 
quantum kernel-based binary classifier," Physics Letters A, vol. 

384, no. 21, p. 126422, 2020. 

[26] H. Yano, Y. Suzuki, K. M. Itoh, R. Raymond, and N. 
Yamamoto, "Efficient discrete feature encoding for variational 

quantum classifier," IEEE Transactions on Quantum 

Engineering, vol. 2, pp. 1-14, 2021. 
[27] W. Li and D.-L. Deng, "Recent advances for quantum 

classifiers," Science China Physics, Mechanics & Astronomy, 

vol. 65, no. 2, p. 220301, 2022. 
[28] A. Zhang, X. He, and S. Zhao, "Quantum algorithm for neural 

network enhanced multi-class parallel classification," arXiv 

preprint arXiv:2203.04097, 2022. 
[29] G. Gentinetta, A. Thomsen, D. Sutter, and S. Woerner, "The 

complexity of quantum support vector machines, 2022. DOI: 

10.48550," arXiv preprint ARXIV.2203.00031. 
[30] M. Russo, E. Giusto, and B. Montrucchio, "Quantum Kernel 

Estimation With Neutral Atoms For Supervised Classification: 

A Gate-Based Approach," in 2023 IEEE International 
Conference on Quantum Computing and Engineering (QCE), 

2023, vol. 1: IEEE, pp. 219-228.  

[31] Z. Krunic, F. F. Flöther, G. Seegan, N. D. Earnest-Noble, and 
O. Shehab, "Quantum kernels for real-world predictions based 



 

on electronic health records," IEEE Transactions on Quantum 

Engineering, vol. 3, pp. 1-11, 2022. 

[32] E. Farhi and S. Gutmann, "Quantum computation and decision 
trees," Physical Review A, vol. 58, no. 2, p. 915, 1998. 

[33] Z. Zhang, Z. Guan, and H. Zhang, "An algorithm of 

optimization for linear nearest neighbor quantum circuits by 
parallel processing," in 2018 Eighth International Conference 

on Instrumentation & Measurement, Computer, 

Communication and Control (IMCCC), 2018: IEEE, pp. 1046-
1050.  

[34] N. L. Wach, M. S. Rudolph, F. Jendrzejewski, and S. Schmitt, 

"Data re-uploading with a single qudit," Quantum Machine 
Intelligence, vol. 5, no. 2, p. 36, 2023. 

[35] O. Lockwood, "An empirical review of optimization techniques 

for quantum variational circuits," arXiv preprint 
arXiv:2202.01389, 2022. 

[36] X. Lee, X. Yan, N. Xie, Y. Saito, D. Cai, and N. Asai, 

"Iterative Layerwise Training for Quantum Approximate 
Optimization Algorithm," arXiv preprint arXiv:2309.13552, 

2023. 

[37] T. Dutta, A. Pérez-Salinas, J. P. S. Cheng, J. I. Latorre, and M. 
Mukherjee, "Single-qubit universal classifier implemented on 

an ion-trap quantum device," Physical Review A, vol. 106, no. 

1, p. 012411, 2022. 
[38] S. Aminpour, Y. Banad, and S. Sharif, "Quantum Classifier 

with Iterative Re-Uploading for Universal Classification: 
Performance Evaluation and Insights," Bulletin of the American 

Physical Society, 2024. 

[39] S. Sharifi and S. Aminpour, "Re-uploading classical data points 
using Quantum MP Neural Network," in APS March Meeting 

Abstracts, 2023, vol. 2023, p. G00. 289.  

[40] M. Schuld, A. Bocharov, K. M. Svore, and N. Wiebe, "Circuit-
centric quantum classifiers," Physical Review A, vol. 101, no. 3, 

p. 032308, 2020. 

[41] Y. LeCun, Y. Bengio, and G. Hinton, "Deep learning," nature, 
vol. 521, no. 7553, pp. 436-444, 2015. 

[42] C. W. Helstrom, "Quantum detection and estimation theory," 

Journal of Statistical Physics, vol. 1, pp. 231-252, 1969. 
[43] M. A. Nielsen and I. L. Chuang, Quantum computation and 

quantum information. Cambridge university press, 2010. 

[44] K. Hornik, "Approximation capabilities of multilayer 
feedforward networks," Neural networks, vol. 4, no. 2, pp. 251-

257, 1991. 

[45] D. C. Liu and J. Nocedal, "On the limited memory BFGS 
method for large scale optimization," Mathematical 

programming, vol. 45, no. 1, pp. 503-528, 1989. 

[46] C. Zhu, R. H. Byrd, P. Lu, and J. Nocedal, "Algorithm 778: L-
BFGS-B: Fortran subroutines for large-scale bound-constrained 

optimization," ACM Transactions on mathematical software 

(TOMS), vol. 23, no. 4, pp. 550-560, 1997. 
[47] Y. Liu et al., "On centroidal Voronoi tessellation—energy 

smoothness and fast computation," ACM Transactions on 

Graphics (ToG), vol. 28, no. 4, pp. 1-17, 2009. 
[48] L. Wang, K. Zhou, Y. Yu, and B. Guo, "Vector solid textures," 

ACM Transactions on Graphics (TOG), vol. 29, no. 4, pp. 1-8, 

2010. 
[49] R. H. Byrd, P. Lu, J. Nocedal, and C. Zhu, "A limited memory 

algorithm for bound constrained optimization," SIAM Journal 

on scientific computing, vol. 16, no. 5, pp. 1190-1208, 1995. 
[50] P. Virtanen et al., "SciPy 1.0: fundamental algorithms for 

scientific computing in Python," Nature methods, vol. 17, no. 3, 

pp. 261-272, 2020. 
[51] X. Bonet-Monroig et al., "Performance comparison of 

optimization methods on variational quantum algorithms," 

Physical Review A, vol. 107, no. 3, p. 032407, 2023. 
[52] A. Pellow-Jarman, I. Sinayskiy, A. Pillay, and F. Petruccione, 

"A comparison of various classical optimizers for a variational 

quantum linear solver," Quantum Information Processing, vol. 
20, no. 6, p. 202, 2021. 

[53] J. A. Nelder and R. Mead, "A simplex method for function 

minimization," The computer journal, vol. 7, no. 4, pp. 308-
313, 1965. 

[54] F. Gao and L. Han, "Implementing the Nelder-Mead simplex 

algorithm with adaptive parameters," Computational 

Optimization and Applications, vol. 51, no. 1, pp. 259-277, 
2012. 

[55] S. Abel, A. Blance, and M. Spannowsky, "Quantum 

optimization of complex systems with a quantum annealer," 
Physical Review A, vol. 106, no. 4, p. 042607, 2022. 

[56] D. Kraft, "A software package for sequential quadratic 

programming," Forschungsbericht- Deutsche Forschungs- und 
Versuchsanstalt fur Luft- und Raumfahrt, 1988. 

 


