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ABSTRACT. Cyclic polytopes have been studied since at least the early 1900’s by Caratheodory 

and others. A generalization is a construction of a class of polytopes such that the polytopes 

have some of their properties. The best known example is the class of neighbourly polytopes. 

Cyclic polytopes have explicit facet structures, important properties and applications in 

different branches of mathematics. In the past few decades, generalizations of their 

combinatorial properties have yielded new classes of polytopes that also have explicit facet 

structures and useful applications. We present an overview of these generalizations along with 

some applications of the resultant polytopes, and some possible approaches to other 

generalizations. 
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1. INTRODUCTION 

We begin with the following observations from [21], [4] and [5], respectively: “ Despite the 

simplicity of the notion of a polytope, our understanding of what properties a polytope may, or 

may not, have is severely hampered by the difficulty of producing polytopes having certain 

desired features.”, “The greatest progress in understanding the combinatorial properties of 

convex polytopes has been made for the special class of simplicial polytopes.” and  “A problem 

in studying non-simplicial polytopes is the difficulty of generating examples with a broad range 

of combinatorial types.”. 

Well-known examples of non-simplicial polytopes are r-fold d-polytopes P where r is a positive 

integer and P is, say, a pyramid, or a bipyramid or a prism or a prismoid. It is noteworthy that 

such P are constructed from lower dimensional polytopes. More general constructions have 

been introduced by, among others, B. Grunbaum, A. Altshuler, I. Shemer, C. Lee, M. Menzel and 

A. Padrol. 

For a d-polytope P* and a point v∉P*, both in ℝd, we say that v is beneath (beyond) a facet F of 

P* if v ∉H, the affine hull of F, and P*∪{v} is (is not) contained in the same closed half-space 

determined by H. The inductive construction, in [21] and [3], of a d-polytope P determined by 

P* and v is defined in terms of the relation between v and the facets F of P*. A more refined 



   

 

   

 

construction of P in [25] ([22]), called Sewing (Generalized Sewing), is defined by the added 

requirement of a relation between v and a flag (under inclusion, a strictly increasing sequence 

of faces) of P*. 

Regarding the explicit facet structure of a d-polytope P, there are complete descriptions of all 

facets in terms of vertices if d is small or if P has few vertices or if P is constructed from lower 

dimensional polytopes. We recall that a cyclic polytope is neighbourly; that is, a neighbourly P 

is a generalized cyclic d-polytope with respect to the number of faces of each dimension, or 

equivalently, if any k≤d/2 vertices of P determine a face of P. If P is neighbourly, then the 

explicit facet structure of P is known for all P in the following cases: d=4 and P has at most ten 

vertices (cf. [1] and [2]); d=6 and P has at most ten vertices (cf. [16]). From [23] and [24], we 

know the bounds for the number of combinatorial types of neighbourly d-polytopes with 

eleven vertices and d=4, 6 and 7. It is noteworthy that there are thousands of combinatorial 

types of neighbourly 4-polytopes (6-polytopes) with eleven vertices, and that the bounds are 

obtained by Sewing and generalizations of Sewing to oriented matroids (Extended Sewing and 

Gale Sewing). 

In the following; we introduce what may be called the “original” cyclic d-polytopes and consider 

which of their common properties, say, a “d-polytope” Q may possess. Such properties are 

expressed as conditions that the “vertices” of Q satisfy, and based upon these conditions, if the 

set of “facets” of Q is determined; that is, the complete vertex-facet relation that is satisfied by 

a convex d-polytope in ℝd, then Q is a combinatorially constructed generalization. The 

argument that there is such a Q⊂ ℝd is determined by constructions such as noted above. 

                                                        2. CYCLIC POLYTOPES. 

 We start with the moment curve Γ(𝕀)⊂ ℝd determined by Γ(t)=(t,t2,…,td),d≥3 and t𝜖 𝕀,an open 

interval in ℝ. We note that Γ(𝕀) is simple, 𝐶∞ and of order d (|H∩ Γ(𝕀)|≤d for any hyperplane       

H⊂ ℝd ). Thus, if ti <tj <tk in 𝕀 then Γ(tj)𝜖Γ((ti ,tk )) and we say that  Γ(ti) separates  Γ(tj)  and  Γ(tk) 

on Γ(𝕀) .We extend the ordering t1 < t2 <…< tn  in 𝕀 to an ordering  Γ(t1)< Γ(t2)<…< Γ(tn)  on Γ(𝕀). 

Let C(n,d) denote the convex hull of n≥d+2 points Γ(ts) with t1 <t2<…<tn  in 𝕀. Then every facet 

of C(n,d) is a (d-1)-simplex ,𝒱={ Γ(t1), Γ(t2),… Γ(tn) } is the vertex set of C(n,d) and a d element 

𝒳 ⊂ 𝒱  determines a facet of C(n,d) if,and only if, every two points of 𝒱 ∖ 𝒳 are separated     

(on Γ(𝕀)) by an even number of  points of 𝒳 ; cf. [20], [21]and [17]. The latter property is called 

Gale’s Evenness Condition (GEC), and Γ(t1)< Γ(t2)<…< Γ(tn)  is called a vertex array of C(n,d). As 

noted by Grunbaum in [21]; the construction of C(n,d) uses very few properties of Γ(𝕀), and 

thus, C(n,d) may be constructed via other simple 𝐶∞ curves of order d in ℝd . 

As background, we introduce our notation and assume familiarity with the basic concepts 

concerning convex polytopes; cf. [17], [21] and [30]. 



   

 

   

 

Let P denote a (convex) d-polytope in ℝd. For j=-1,0,1,…,d, let ℱj (P) denote the set of j-faces of 

P with 𝒱(𝑃) = ℱ0 (P), ℰ(𝑃) = ℱ1(P) and ℱ(𝑃) = ℱd-1(P), the set of facets of P. The face lattice 

ℒ(P) of P is the collection of all faces of P ordered by inclusion. The combinatorial properties of 

P are the properties of ℒ(P), and two d-polytopes are combinatorially equivalent (≈) if their 

face lattices are isomorphic. A combinatorial construction of P is a construction of a lattice that 

is the same as ℒ(P), and a realization of P is the geometric construction of a convex polytope 

Q⊂ ℝd  with the property that Q≈P.For a set Y of points in ℝd, let conv(Y) (aff(Y)) denote the 

convex (affine) hull of Y. If Y={y1,y2,…,ys} is finite, we set [y1,y2,…,ys] = conv(Y ) and    < y1,y2,…,ys> 

=aff( Y).  

Let P⊂ ℝd be a d-polytope with 𝒱(𝑃) = {v1,v2,…,vn} ,n≥d+2. Then P is cyclic if P≈C(n,d); that is, 

P satisfies GEC with respect to a vertex array ( totally ordered 𝒱(𝑃)). As a simplification, we 

order 𝒱(𝑃) by vi < vk if, and only if i<k, and say that vj separates vi and vk in 𝒱(𝑃) if vi < vj < vk. 

Let P be cyclic with v1 < v2 <…<vn  Then                                                                                                               

•{ [v1,vi-1,vi], [vk,vk+1,vn ]|3≤ 𝑖 ≤ 𝑛 and 1≤ 𝑘 ≤ 𝑛 − 2} if d=3,  and                                                 

•{[vi1,vi,vj,vj+1], [v1,vk,vk+1,vn]|2≤ 𝑖 < 𝑗 ≤ 𝑛 − 2 and 2≤ 𝑘 ≤n-2 } if d=4.                                      

Accordingly, we anticipate different types of generalizations for odd and even dimensional 

C(n,d), and seek them among the convex hull of points on simple 𝐶∞ curves Ψ(𝕀) in ℝd that 

have some of the same properties as Γ(𝕀). We say that Ψ(𝕀) is convex if |L∩ Ψ(𝕀)|≤2 for any 

line L⊂ ℝd and Ψ(𝕀) ⊂bd(conv Ψ(𝕀)). Next, Ψ(𝕀) is ordinary if each point of Ψ(𝕀) has an open 

neighbourhood of order d in Ψ(𝕀). We note that Γ(𝕀) is convex and ordinary. 

                                                 3.  ODD DIMENSIONS 

We start with d=3, (x,y,z)𝜖ℝ3 and consider the simple 𝐶∞  spherical curves Ψm= Ψm (𝕀)  

determined by                                                                                                                                                                      

                   Ψm (𝑡) =(cos(mt)sin(t), sin(mt)sin(t),cos(t)) ,t𝜖𝕀=(0,𝜋) and m𝜖ℤ+ .                                                     

We note that Ψm  is convex, |H∩ Ψm (𝕀)|<∞ for any plane H⊂ ℝ3 and if Ψm (𝑡)𝜖H, then there is  

an open neighbourhood U of t in 𝕀 such that H∩ Ψm (U)={ Ψm (𝑡)} and Ψm (U) is contained in a 

closed half-space determined by H or not. In case of the former (latter), we say that H supports 

(cuts) Ψm  at the point Ψm (𝑡) . 

We note that the horizontal planes H: z=c  and  -1<c<1 yield that |H∩ Ψm|=1, and hence, (0,0,1) 

and (0,0,-1) are boundary points of Ψm . The vertical planes H, through the z-axis 𝕃, yield that 

|H∩ Ψm|=m, Ψm  winds m times about  𝕃 ,and  H cuts  Ψm at each point of intersection; cf. [10]. 

Let Qm⊂ ℝ3  be a 3-polytope with vertex set  𝒱𝑚 = {q1,q2,…,qn}, qi= Ψm (ti) and t1<t2<…<tn in 𝕀. 

Let  H⊂ ℝ3 be a plane such that 𝕃 ⊂H, H∩ Ψm([t1,tn])=H∩ 𝒱𝑚 = { p1,p2,…,pu}, pj= Ψm (sj), 

t1<s1<s2…<su<tn , zj=cos(sj) and u≥ 4. Then                                                                                                                                                                                               

•zu<…<z2<z1 and H∩Qm=[ p1,p2,…,pu] is a u-gon with the edges [p1,p2],[pu-1,pu] and [pj,pj+2] for     

1≤ 𝑗 ≤u-2, 

and                                                                                                                                                                                                                                                                                                                       



   

 

   

 

•with s0=t1 and su+1=tn ,the arcs Ψm((sj-1,sj)) and Ψm((sj,sj+1)) are contained in distinct half-spaces 

of ℝ3\ H for j=1,2,…,u.                                                                                                                                                                                                                                                                                     

Accordingly, if H∩Qm 𝜖ℱ(Qm) then two distinct elements from 𝒱𝑚\ (H∩ 𝒱𝑚) are separated in 

q1<q2<…<qn by an even numbers of pj’s, and Qm satisfies the necessary part of GEC. We use the 

preceding two properties of H∩Qm 𝜖 ℱ(Qm) in the construction of a generalization of C(n,3), and 

then of C(n,d),d≥3. We note from [10] that Ψm  is an ordinary convex curve, and say that a 

polytope is Gale if it satisfies the necessary part of GEC with respect to some vertex array of P.                                                                                                            

A 3-polytope P⊂ ℝ3 is said to be ordinary if it has a vertex array x0<x1<…<xn, say, such that                                                               

(O1)*  P is Gale with x0<x1<…<xn ,and                                                                                                                                                                                                                                                       

(O2)*  for each facet of P, if y1<y2<…<yu is the (induced) vertex array of F then F is a u-gon with 

the edges [y1,y2],[yu-1,yu] and [yj,yj+2],j=1,2,…u-2.                                                                                                                                                                                                           

Such polytopes are realizable and we refer to [10] for examples. 

We say that a d-polytope P⊂ ℝd, d≥ 3, is ordinary if it has a vertex array x0<x1<…<xn such that 

(O1) P is Gale with x0<x1<…<xn , and                                                                                                         

(O2) for each facet of P, if y1<y2<…<yu is the vertex array of F then G0,G1,….,Gu are the               

(d-2)- faces of F  with Gi=[yi-d+2,…,yi-1,yi+1,…,yi+d-2] and the convention that yj=y0 (yj=yu) if j<0(j>n).                        

We note that G0=[y0,y1,…,yd-2], Gu=[yu-d+2,…,yu-1,yu] and, as C(n,d) is simplicial, it is ordinary. 

REMARK 1.From [10] and [12], we cite the following properties of an ordinary d-polytope                  

P⊂ ℝd with (respect to the vertex array) x0<x1<…<xn ,d≥ 3.                                                                                     

1.1 There is an integer k (the characteristic  char(P) of P) such that d≤ 𝑘 ≤ 𝑛, and [x0,xi]𝜖ℰ(𝑃) 

if, and only if, [xn-i,xn]𝜖ℰ(𝑃) if, and only if, i=1,2,…,k.                                                                                         

1.2 P has an explicit facet structure; that is, a complete list of vertex-facet incidences.                                                                                                          

1.3 If k=n then P is cyclic with x0<x1<…<xn .                                                                                             

1.4 If d is even then P cyclic with x0<x1<…<xn .                                                                                                    

1.5 If d≥ 5 is odd and k=d,then ℱ(𝑃)={F0,F1,…,Fn} with Fi=[xi-d+1,…,xi-1,xi+1,…,xi+d-1] and, xj=x0 

(xj=xn) if j<0 (j>n).                                                                                                                                        

We refer to [15] for an inductive construction ( starting with a cyclic (2m+1)-polytope with k+1 

vertices) of ordinary (2m+1)-polytopes P with the characteristic k in ℝ2m+1, and note that (O2) 

and 1.5 indicate that there is a second family of polytopes associated with P. 

We  say that a d-polytope M⊂ ℝd ,d≥ 2, is a multiplex if it has a vertex array y0<y1<…<yn with  

                                            ℱ(M)={ [yi-d+1,…,yi-1,yi+1,…,yi+d-1]|i=0,1,…,n}                                                               

and, yj=y0 (yj=yn ) if j<0 (j>n). 

REMARK 2. We refer to [11] for an inductive construction (starting with a d-simplex) and the 

following properties of a d-multiplex M⊂ ℝd with y0<y1<…<yn , n≥d+1≥4.                                   

2.1 Each facet of M is a (d-1)-multiplex with the induced vertex array.                                                    

2.2 Each vertex figure of M is a (d-1)-multiplex with the induced vertex array.                                    

2.3 M is totally self–dual.                                                                                                                                 



   

 

   

 

2.4 If d≥5 is odd, then M is ordinary with y0<y1<…<yn and char(M) = d.                                         

Since a d-multiplex is a generalized d-simplex, there is a natural generalization of a simplicial 

polytope (each proper face is a simplex) to a multiplicial polytope (each proper face is a 

multiplex).  

We observe that ordinary polytopes may be characterized as Gale and multiplicial, and it is 

known that cyclic polytopes may be characterized as Gale and simplicial. In view of 1.4, we have 

non-cyclic generalizations of C(n,d) if d≥3 is odd. In addition, ordinary polytopes are 

constructible by the Generalized Sewing method of Lee-Menzel. 

                                                       4. EVEN DIMENSIONS  

Let d=2m≥4. Again, we seek the convex hull Q of points x0,x1,…,xn (chosen in order of 

appearance ) on an oriented simple ordinary convex curve Ψ in ℝd   such that                                      

• the convex property of Ψ yields that Q is Gale with x0<x1<…<xn , and                                                   

• the ordinary property of Ψ yields that Q has non-simplicial facets.  

The difficulty is that (with one exception in ℝ4) there is no explicit model of such a Ψ. We do 

know that the convex hull of k≥d+2 points on an order d subarc of Ψ is a cyclic d-polytope, and 

that Ψ is the union of such subarcs. Thus, we seek ,say, n≥d+2 points x1,x2,…,xn in ℝd   such that          

• Q=[ x1,x2,…,xn ] is Gale with x0<x1<…<xn , and                                                                                                      

• there is an integer k such that d+2≤k≤n, [xi+1,xi+2,…,xi+k] is a cyclic d-polytope for i=0,1,…,n-k, 

and [xi+1,xi+2,…,xi+k,xi+k+1] is not cyclic for any 0≤i≤n-k-1.                                                                            

We call k, the period of Q, and say that Q with the latter property is periodically-cyclic . 

For d=2m≥6 and n≥d+2, there is in [13] an inductive construction of a periodically-cyclic Gale 

d-polytope Qn⊂ ℝd with n vertices. We start with a cyclic d-polytope Qk⊂ ℝd with x1<x2<…<xk , 

k≥d+2, and assume that for n>r>k, Qr=[ x1,x2,…,xr] is constructed in the prescribed manner. 

Finally, we choose a point xn so that                                                                                                        

(PC1) xn ϵ <x1,xn-k+1,xn-k+2,xn-1> and for each facet F of Qn-1,                                                                               

(PC2) <F> does not support Qn=[Qn-1,xn] in the case F∩[ x1,xn-k+1,xn-1]=[x1,xn-1],and                                 

(PC3) F is a facet of Qn in the case F∩[ x1,xn-k+1,xn-1]≠[x1,xn-1]  and [x1,xn-k+1,xn-k+2,xn-1]⊄F.                 

It is noteworthy that this construction yields the explicit facet structure of Qn, and that it does 

not yield a periodically-cyclic Gale d-polytope if d=4 or if d≥ 5 is odd. In addition, it was 

observed by M. Bayer that the facets of Qn also belong to a new family of polytopes.    

An e-polytope P⊂ ℝe,e≥ 3, is a braxtope if it has a vertex array y0<y1<…<yv such that v≥e, 

                                               ℱ(P)={T0,T1,…,Tv-e+1,E2,E3,…Ev}                                                                                 

with Ti=[yi,yi+1,…,yi+e-1], Ej=[y0,yj-e+2,…,yj-1,yj+1,…,yj+e-2] and yt=y0 (yt=yv) if t<0 (t>v).                              

For e≤ 2, an e-braxtope is an e-simplex. Then a d-polytope Q is braxial if each proper face of Q 

is a braxtope via the ordering induced by a fixed vertex array of Q. 



   

 

   

 

REMARK 3. We refer to [8] for the following properties of an e-braxtope P⊂ ℝe with y0<y1<…<yv 

and v≥ 𝑒 + 1 ≥ 4.                                                                                                                                                   

3.1 If v≤2e-2 then P is a face of a periodically-cyclic Gale 2m-polytope.                                                             

3.2 If v≥2e-1 then there is an inductive construction of P.                                                                          

3.3 P is braxial.                                                                                                                                                             

3.4 The vertex figure of P at y0 is an (e-1)-multiplex with the induced vertex array. 

REMARK 4. We refer to [7] for the following properties of a Gale and braxial d-polytope Q⊂ ℝd 

with x0<x1<…<xn, n≥d+1≥4.                                                                                                                                    

4.1 If d is odd then Q is cyclic with x0<x1<…<xn.                                                                                               

4.2 If d is even then [x0,x1,…,xn-1 ] is a Gale and braxial d-polytope with   x0<x1<…<xn-1 .                                          

4.3 If d=2m≥ 6 then there is an s𝜖{0,1,…,n-d+1} such that [xj,xn]𝜖 ℰ(Q)  for s≤ j ≤  n-1.                                                   

• If s=1 then  Q is cyclic x0<x1<…<xn .                                                                                                                           

•If 2≤ s≤ n -d   then   Q is periodically-cyclic with the period k=n-s+2.                                                            

•If s=n-d+1 then Q is a braxtope with x0<x1<…<xn.                                                                                                                                         

4.4 If   d=2m≥ 6 then Q is periodically-cyclic and constructed via (PC1), (PC2) and (PC3). 

In view of 4.4, it remains to determine if there are Gale and periodically-cyclic d-polytopes Q if 

d=4 or, if d=2m≥ 6 and Q is not braxial.                                                                                                                                                    

For a generalization of C(n,4), we  turn to the generalized trigonometric moment curves Σ   and 

the bi-cyclic 4-polytopes  B(p,q,n) introduced by Z.Smilansky in [27] and [28]. From [16], we 

have that the convex hull of n points  on the moment curve     

                                    (cos2πt, sin2πt, cos4πt, sin4πt), tϵ𝕀 = [0,1),                                                                                              
is a cyclic 4-polytope. For relatively prime integers q>p>1, Smilansky introduced B(p,q,n) as the 

convex hull of n evenly spaced points on 

Σ(t) = (cos2πpt, sin2πpt, cos2πqt, sin2πqt), tϵ𝕀;         
that is,  B(p,q,n)=[b0,b1,…,bn-1] with bi=Σ(𝑖 𝑛⁄ ). 

The curve Σ = Σ(𝕀) is closed ,ordinary and the property of Σ at a point is the same as the 

property at any other point. Thus, it follows that                                                                                                                                                                          

[b0,bj,bk,…,bs] 𝜖ℱ(B(p, q, n))  if, and only if,  [bt,bj+t,bk+t,…,bs+t]𝜖ℱ(B(p, q, n)) for any integer t. 

We note that any F𝜖ℱ(B(p, q, n))  is a simplex, or an antiprism over a regular p-gon, or an 

antiprism over a regular q-gon. 

REMARK 5. We refer to [11] for the following properties of B(p,q,n)𝜖ℝ4  with n>pq.                                

5.1 B(p,q,n) is Gale with b0<b1<…<bn-1 if, and only if, q divides n; furthermore, it has an explicit 

facet structure.                                                                                                                                             

5.2 There is a number 0<tpq<1 such that B(p,q,n) is periodically-cyclic with  b0<b1<…<bn-1  and 

the period k=[tpqn].   



   

 

   

 

The value of tpq is known only for some p and q. For example, t23~0.419569 and B(2,3,30) is 

periodically-cyclic with k=12. In the case that n=pq, q≥7 and q-3≥p≥
q+1

2
 ,there are examples 

of B(p,q,n) that are Gale and periodically-cyclic with the period q.      

                                              5. APPLICATIONS AND APPROACHES     

  Two of the important properties of the polytopes listed in the previous sections are that they 

are non-simplicial and that they have explicit facet structures. Let M(n,d) (O(n,k,d)) denote a     

d-polytope that is a multiplex (ordinary with the characteristic k). The applicability of M(n,d) 

and O(n,k,d) to understanding the combinatorial properties of convex  polytopes  is exemplified 

below (cf. [17],[21] and the cited articles for definitions). 

In [29], R. Stanley observed that the flag vector of M(n,d) is the same as the flag vector of a 

product of face lattices of polygons , and that the face lattice of M(n,d) is locally self-dual and 

not the direct product of smaller lattices. 

In [19],T. Dinh proved that O(n,k,d) is realizable as a rational polytope, and determined its         

f-vector for n≥k≥d=2m+1≥5. 

In [4], M. Bayer , A. Bruening and J. Stewart determined the flag vector of M(n,d) and, the toric 

vectors of M(n,d) and O(n,k,5). They showed that the flag vector M(n,d) is the same as the flag 

vector of a (d-2)-fold pyramid over the (n-d+3)-gon, and presented a computer verification  that 

the set of f-vectors of all O(n,k,d), 5 ≤d=2m+1≤37, spans the Eulerian hyperplane. 

In [5], M. Bayer determined the flag vectors of multiplicial d-polytopes for d=2m+1≥5, and the 

toric vector of O(n,k,d).In addition, there is a construction of multiplicial polytopes with a facet 

with a large number of vertices. 

In [6], M. Bayer presented shallow triangulations of M(n,d) and O(n,k,d), and a combinatorial 

interpretation of the h-vector of O(n,k,d) based on a shelling of O(n,k,d). 

In [9], L. Billera and E. Nevo constructed Bier posets (over the face posets of M(n,d),n≥d≥4) 

that are nonpolytopal nonsimplicial semi-lattices with nonnegative toric vector. 

We recall that ordinary polytopes are defined via their facets (multiplexes), and that O(n,k,d) is 

cyclic if k=n, or if d=2m. Also, simplicial polytopes are multiplicial, and a 2m-polytope is cyclic if, 

and only if, it is Gale and simplicial. Thus, ordinary d-polytopes are natural generalizations of 

cyclic d-polytopes for all d≥3, and their characterization as “Gale and multiplicial” d-polytopes 

conveys the idea that “Gale and braxial” d-polytopes, say Q*(d), may be also natural 

generalizations of cyclic d-polytopes for all d≥3. It is not clear if that is the case as Q*(2m+1) is 

cyclic and, odd-dimensional cyclic polytopes are not necessarily periodically-cyclic. We know 

also that Q*(2m) is realizable only if it is periodically-cyclic and then, only for m≥3. In that 



   

 

   

 

sense, are there better constructions of “cyclic like” even-dimensional polytopes? Specifically, 

are there constructions of classes 𝒞= {Q(d)|d≥4} of d-polytopes with an explicit facet structure 

and any of  the following properties:                                                                                                                                                       

•Every Q(2m)𝜖𝒞 is periodically-cyclic, Gale and not braxial.                                                                                         

•Every Q(2m)𝜖𝒞 is Gale and not periodically-cyclic .                                                                                                                   

•Every Q(2m)𝜖𝒞 is periodically-cyclic and not Gale.                                                                                        

We note from Section 4 that there are periodically-cyclic Gale 4-polytopes that are bi-cyclic and 

not braxial. An examination of B(p,q,n) indicates that there may be combinatorial constructions 

of “cyclic like” d-polytopes P(n,d) with n≥d+3, d≥4 and a  vertex array v1<v2<…<vn so that with 

P(r,d)=[v1,v2,…,vr] and r=k+1,k+2,…,n for some d+3≤k≤n:                                                                                                                   

i) P(k,d) satisfies (GEC) with v1<v2<…<vk,                                                                                                                

ii) P(k+1,d) is not a simplicial d-polytope,                                                                                                                   

iii) P(r,d) is Gale with v1<v2<…<vr, and                                                                                                                       

iv) [v1,v2,…,vr-1]≈[v2,v3,…,vr] via the lattice isomorphism induced by vj →vj+1 . 

C(n,2m) satisfies i),iii) and iv), and there a different ways for a P(n,d) to satisfy ii). For example, 

if  d=4 and  P(k+1,4) is not simplicial with simplicial facets [v1,v2,v3,v4,vk+1] and [v1,vk-2,vk-1,vk,vk+1],                                          

then we obtain from [15] that there is a combinatorial construction of P(n,4) such that  

ℒ(P(n,4)) is the same as ℒ(B(p,q,n)) in the case that q=k≥7, q-3≥p≥(𝑞 + 1) 2⁄  and n=pq . If d>4, 

are conditions i)-iv) sufficient  to yield the explicit facet structure of a realizable P(n,d) that is 

Gale and not braxial? 

We note that if P is cyclic with x0<x1<…<xn then P is also cyclic with xn<xn-1<…<x1<x0 . 

Accordingly, is there a combinatorial construction of d-polytopes Q that are                                            

i) Gale with x0<x1<…<xn, and                                                                                                                                 

ii) for any F 𝜖ℱ(Q) , conv({xn-j|xj𝜖F})𝜖ℱ(Q)? 

A family of d-polytopes Xr(d),d≥r+2, with a vertex array  x0<x1<…<xn and an explicit facet 

structure is introduced in [8] with the property that X1(d) is a braxtope . Xr(d) is called an               

(r,d)-braxtope. With the convention that  Xr(d) is a d-simplex for d≤r+1, it is conjectured that 

theorems concerning braxtopes have natural analogues for (r,d)-braxtopes. It is open as to 

what are the properties of d-polytopes, all of whose facets are (r,d-1)-braxtopes.   

Finally, we recall that an edge E of a polytope P is said to be universal if [E,v] is a face of P for 

every vertex v of P. From [25], we have that if P is a neighbourly 2m-polytope with n≥2m+3 

vertices then P has u≤n universal edges; furthermore, u=n if, and only if, P is cyclic. In [26], 

Shemer showed that u≠n-1, and called P almost-cyclic if u=n-2. It is now natural to ask if there 

exist non-simplicial d-polytopes Q that are Gale with x0<x1<…<xn and have u universal edges for, 

say, u≥n-2? 
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