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Abstract

Lyapunov redesign is a classical technique that uses a nominal control and its corresponding nominal Lyapunov function to
design a discontinuous control, such that it compensates the uncertainties and disturbances. In this paper, the idea of Lyapunov
redesign is used to propose an adaptive time-varying gain controller to stabilize a class of perturbed chain of integrators with
an unknown control coefficient. It is assumed that the upper bound of the perturbation exists but is unknown. A proportional
navigation feedback type gain is used to drive the system’s trajectories into a prescribed vicinity of the origin in a predefined
time, measured using a quadratic Lyapunov function. Once this neighborhood is reached, a barrier function-based gain is used,
ensuring that the system’s trajectories never leave this neighborhood despite uncertainties and perturbations. Experimental
validation of the proposed controller in Furuta’s pendulum is presented.
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1 Introduction

Lyapunov redesign is a classical robustification tech-
nique in which an additional discontinuous control is
designed to compensate matched uncertainties and ex-
ternal disturbances. Such approach uses the knowledge
of a nominal control and its corresponding Lyapunov
function to design an appropriate switching manifold.
The discontinuous control using such manifold ensures
the negativity of the nominal Lyapunov function if the
upper-bound of the perturbations is known [20][13].
Since the upper bound of the perturbation is usually
unknown or overestimated, adaptive gains in controllers
are needed to stabilize the system [7][33]. In adaptive
strategies for systems with an unknown upper bound
of the perturbation and unknown control gain, three
different issues should be solved simultaneously:

(i) To confine the trajectories of the system into a pre-
scribed neighborhood of the origin before a prede-
fined time moment.

⋆ Corresponding author

(ii) To update the controller’s gain, once a prescribed
neighborhood is reached, the system’s trajectories
are confined in this region while the controller signal
compensates for the perturbation.

(iii) To produce a bounded continuous control signal.

Recently, explicit time-varying controllers have been
proposed in [35,12,1,5] that can be used to solve the
problem (i) for the stabilization of a perturbed chain
of integrators. The first approach of this type [35],
so-called Proportional Navigation Feedback (PNF),
ensures convergence in prescribed time with a propor-
tional controller with a time-varying gain that becomes
unbounded as the solution tends to zero at the pre-
scribed time, that is why an absolutely continuous
solution might not be defined at the convergence time,
but in a generalized sense [32]. Consequently, adding
measurement noise worsen regulation accuracy at the
prescribed time, see [2,5].

To solve the problem (i), the works [12,1,5] take advan-
tage of the time-varying gains to redesign the fixed-time
controllers ensuring the convergence to the origin be-
fore the predefined convergence time moment and main-
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tain the solutions therein for all future times. However,
the usage of these controllers does not consider the case
when the control coefficient is uncertain, and to main-
tain the solution in the origin, these controllers require
the knowledge of the upper bound of perturbations.

Another strategy is to drive the system’s trajectories
to an arbitrary neighborhood of the origin before the
predefined time with time-varying feedback [3] and stay
therein for all future times. The paper [3] uses a per-
turbation estimator in combination with a performance
function-based controller to render a relative degree two
system practical stabilizable within an assigned reaching
time. The paper [3] considers parametric uncertainty;
its effectiveness relies on an Artificial Neural Network,
which can be computationally expensive, and this ap-
proach is developed only for systems of order two. Thus,
ensuring the problem (i) solution for arbitrary relative
degree perturbed systems is still an open problem.

There are a lot of sliding mode approaches [27,28,33,24,10]
to solve the problem (ii) keeping the trajectories in a
neighborhood of the sliding set, and then fixing [21,17]
or reducing [28,34] the gains of the controller. How-
ever, in such approaches, a control law is discontinuous,
which produces the chattering effect, high-frequency os-
cillations that may damage systems. Other approaches
ensure a prescribed neighborhood of a sliding set via
barrier functions [22,23], or monitoring functions [16,31].
An important drawback of the previous works is that,
due to the absence of knowledge on the upper bound of
the perturbations, the reaching phase for arrival into a
neighborhood of the origin of the state space cannot be
predefined.

In the paper [8], it is shown that a barrier function-based
adaptation of Lyapunov redesign is not straightforward
because to ensure the property (i) it is necessary to show
that the system’s trajectories converge uniformly into a
priori predefined vicinity of origin for all system’s states
in a predefined time. Whether convergence to a neigh-
borhood of a sliding set can be ensured by using a uni-
form reaching phase strategy in [9], the uniform conver-
gence from the point of arrival on the sliding set to the
predefined vicinity of the origin cannot be ensured.

On the other hand, [19] presents a Higher-Order Slid-
ing Mode Control using barrier functions for systems
of arbitrary order. However, the homogeneous topology
induced by the Lyapunov function makes it difficult to
prescribe the behavior of the system’s states, and the
time of convergence to the homogeneous vicinity is not
predefined, see the simulation example in [11].

The authors of [30] present an adaptive strategy based
on the combination of two different controllers: monitor-
ing and barrier functions, providing a predefined upper
bound of the settling time to a vicinity of the sliding sur-

face with relative degree one. Moreover, in [30], the un-
certainties in the control coefficient are not considered.

This paper introduces an adaptive control combining a
time-varying feedback gain with barrier function adap-
tive gain for a perturbed chain of integrators with un-
known upper bounds of the perturbations and unknown
control coefficient based on Lyapunov redesign [13],[20].
This paper contributes to solving (i)-(iii) with just one
controller with a unique switch in the controller’s gain:

• A PNF type gain is used to reach a prescribed neigh-
borhood of the origin in a predefined time (in the sense
of [35,12,1,5]), measured in terms of a quadratic Lya-
punov function. The singularity of the time-varying
feedback control is avoided because the adaptive bar-
rier function-based control is switched on when the
system’s solutions reach the interior of the prescribed
neighborhood of the origin.

• A barrier function-based gain allowing the designer
to prescribe the desired neighborhood in terms of the
same Lyapunov function, where the trajectories are
kept, is presented. Once this neighborhood is reached,
the provided gains ensure that the control signal fol-
lows the perturbations.

• The usage of the topology generated by the same Lya-
punov function simplifies the switch between the gains
allowing to make it in one step. Moreover, the con-
trol signal is continuous and bounded, except at the
switching moment.

• Finally, proposed results are validated experimentally
in the Furuta pendulum system.

The organization of the paper is as follows: In Section 2,
the problem statement is presented. Section 3 contains
the control law design and main result of the paper. Nu-
merical simulations are shown in Section 4. An experi-
mental result on Furuta’s pendulum is given in Section
5. The paper closes with some concluding remarks in
Section 6. Technical proofs are given in Appendix A.

Notation. The symbols ‖·‖ and |·| denote the Euclidean
norm and the absolute value of a vector and a scalar
value, respectively. The sign function on the real line is
defined by sign(z) = z

|z| for z 6= 0 and sign(0) = [−1, 1].

For a real square matrix G, λmin(G) (resp. λmax(G))
denotes the minimum (resp. maximum) eigenvalue of G.

2 Problem Statement

We address the robust stabilization of the perturbed
chain of integrators of the form

ẋ(t) = Jnx(t) + en [b(t)(1 + δb(t))u(t) + f(t)]

x(0) = x0 ,
(1)

where x(t) ∈ R
n denotes the state of the system, u(t) ∈

R is the control input, (ei)1≤i≤n denotes the canoni-
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cal basis of Rn, Jn denotes the n-th Jordan block (i.e.,
Jnei = ei−1 for 1 ≤ i ≤ n with e0 = 0) and b(t) is
the known part of the control coefficient, without loss
of generality assume that b(t) > b > 0. The perturba-
tions f : R+ → R and δb(t) : R+ → R are measurable
functions in t where f(t) acquaints for external pertur-
bations to the system and δb(t) is the unknown control
coefficient.

In the sense of quadratic stabilizability [26], without
the presence of external perturbations, the stabilization
problem of (1) is readily solved by using a linear state
feedback. In fact, exponential stabilization of the closed-
loop system is ensured and its trajectories can be con-
fined inside any neighborhood of the origin in a finite
time. We assume the following

Assumption 1 For all t ∈ R+, there exist unknown
constants M > 0 and 0 ≤ εb < 1 such that |f(t)| ≤ M
and |δb(t)| ≤ εb.

Notice, however, that under the above assumption, a
linear control law for system (1) can only ensure ultimate
boundedness of the trajectories. Considering the control
law

u(t) = −
1

2

(

1

γ
+ 1

)

b−1(t)eTnPx(t) , (2)

where γ ∈
(

0, 1+
√
5

2

]

and P is solution of the Algebraic

Ricatti Equation (ARE)

JT
n P + PJn − γPene

T
nP +Q = 0, Q > 0 , (3)

Remark 2 There exists a value γ∗ such that the solution
of (3) exists for all γ ∈ (0, γ∗); see [6].

Proposition 3 Suppose that Assumption 1 is fulfilled.
Let µ := 2Mλmax(P )/ (θλmin(Q)) for some 0 < θ <
1, there is T ∗ := T ∗(µ, x0) such that for all t ≥ T ∗,
trajectories of system (1) in closed-loop with (2) satisfy

‖x(t)‖ ≤

√

λmin(P )

λmax(P )
µ . (4)

The stabilization problem solved in Proposition 3 has
two main disadvantages:

• The ultimate bound depends on the unknown pertur-
bation’s upper bound,

• The time to reach such ultimate bound grows without
bound with the initial conditions and the perturba-
tion’s upper bound.

To overcome the above dependency of the perturbation’s
upper bound on the ultimate bound, one can redesign

the control law such that it compensates the perturba-
tions while ensuring exponential stabilization. Following
the Lyapunov redesign methodology [14], one can add
a robustifying term to the control law in Proposition 3.
Consider the redesigned control law

u = −
1

2

(

1

γ
+ 1

)

b(t)−1eTnPx

− ρb(t)−1sign

(

1

2

(

1

γ
+ 1

)

eTnPx

)

(5)

where P is solution to the ARE (3) and 0 < γ ≤ 1+
√
5

2 .
The following result can be obtained.

Proposition 4 Suppose that Assumption 1 is fulfilled.
Let ρ ≥ M/(1 − εb) and given 0 ≤ µ∗ < ‖x0‖, there is
T̄ ∗ = T̄ ∗(x0, µ

∗) such that the trajectories of the closed-
loop system (1)-(5) satisfy

‖x(t)‖ ≤ µ∗ (6)

for all t ≥ T̄ ∗

However, there are two main concerns that immediately
arise:

• The gain of the controller depends on the knowledge of
the upper bounds of perturbations that are unknown.

• The time to reach the predefined neighborhood of the
origin grows without bound with the initial condition.

In this paper, we adjust the redesigned controller in (5)
by introducing adaptive gains to deal with the lack of
knowledge of the perturbations’ upper bound and incor-
porating time-varying feedback gains to reach the pre-
defined neighborhood within a predefined reaching time
(bounded finite time with a prescribed upper bound).
Specifically, for any initial condition, this paper proposes
a u(t) that drives the system’s trajectories into a pre-
scribed neighborhood of the origin in a predefined time,
and after that, the control law ensures that the system’s
trajectories will never leave that neighborhood despite
the presence of perturbations.

3 Control design and main result

In this section, the control methodology is presented.
The proposed approach consists of two phases:

• First, a control strategy that drives every system’s
trajectory to a prescribed vicinity of the origin before
a predefined time, in the presence of perturbations
with an unknown upper bound.

• A control gain that ensures the ultimate boundedness
of the trajectories in the prescribed vicinity of the ori-
gin without requiring knowledge of the upper bound
of the perturbations.

3



It is important to note that in both phases, the same
quadratic Lyapunov function is used. This Lyapunov
function, obtained via the ARE, simplifies the switch-
ing between both phases and allows one to deal with the
uncertain control coefficient.

3.1 Predefined time reaching phase

This subsection provides a predefined reaching phase
controller based on a combination of PNF and adaptive
gains for the redesigned controller in (5). Consider the
reaching phase control law as

u(t) = −b(t)−1

[

1

2

(

1

γ
+ 1

)

κ(t)neTnPΩ−1(t)x(t)

+ Γ(t, x(t))sign

(

1

2

(

1

γ
+ 1

)

eTnPΩ−1(t)x(t)

)]

(7)

where 0 < γ ≤ 1+
√
5

2 , P is solution of the ARE (3),
Ω(t) = diag(1, κ(t), . . . , κ(t)n−1) for κ(t) = 1

α(T−t) a

continuous time varying gain and Γ(t, x) is the adaptive
gain given by Γ̇(t, x) = |eTnPΩ−1(t)x(t)|κ(t)1−n.

It is important to mention that V (t) = xT (t)Px(t) is a
Lyapunov function for the closed-loop of the PNF and
the nominal system (i.e. u = γb(t)

−1
κ(t)neTnPΩ−1(t)x(t)

and f(t) = 0 ). Then, following [13,20] one can add a
robustifying term to compensate the perturbation f(t).
Additionally, the knowledge of the upper bound of the
uncertain control coefficient is not needed for the design
of the nominal PNF.

Lemma 5 For the closed-loop (1)-(7), fix T > 0 and
ε > 0. If Assumption 1 is satisfied and

α <
λmin(Q)

2(n− 1)λmax(P )
, (8)

then there exist a first time t̄(x0) < T such that the
solution of the closed-loop system (1)-(10) reaches the
boundary of the set S ǫ

2
:= {x ∈ R

n | V (x) ≤ ε/2}.

During the so-called reaching phase, PNF type law in-
creases the proportional feedback until the value allow-
ing compensation of the uncertainties and disturbances,
and, consequently, the system’s trajectories converge to
S ǫ

2
in a time t̄ < T uniformly for any initial condition

and size of perturbations. Moreover, the control law is
uniformly bounded as shown in Appendix A.4

Remark 6 Note that for PJn+JT
n P−γPene

T
nP = −Q,

the ratio (8) is maximized if Q = I; see [25].

3.2 Barrier function phase

Once in a predefined neighborhood of the origin, this
subsection provides a barrier function phase controller

by choosing a positive semidefinite barrier function as
gain in the robustifying part of the redesigned controller
in (5).Consider the control law

u(t) = −b(t)
−1

[

1

2

(

1

γ
+ 1

)

eTnPx(t)

+
V (t)

ǫ− V (t)
sign

(

1

2

(

1

γ
+ 1

)

eTnPx(t)

)]

(9)

where the function V (t) = xT (t)Px(t) with P = PT > 0
solution of (3).

Lemma 7 Suppose that Assumption 1 is satisfied. Con-
sider the control law (9) in closed-loop with system (1).
For any given ǫ > 0 such that V (x(t0)) ≤

ǫ
2 , the trajecto-

ries of the closed loop system (1)-(9) satisfy V (x(t)) < ǫ
for all t ≥ t0.

With the system’s trajectories being in the barrier
width, the controller barrier function-based law en-
sures that the system’s solution are confined into the
set Sǫ = {x ∈ R

n | V (x) < ε} for all t > t0 without
the knowledge of the upper bound of the perturbation.
Note that function V (t) = xTPx is in fact a known
Lyapunov function for a nominal system (with only

u = − 1
2

(

1
γ + 1

)

b(t)−1eTnPx(t) and f(t) = 0), then one

can add a robustifying term to compensate f(t) 6= 0 in
the sense of [20,13].

Although the idea is similar in [19], the dependency of
the barrier function on a homogeneous function V for a
homogeneous controller introduces a notable complexity.
The ultimate bound is given in terms of a homogeneous
norm, which can be difficult to prescribe and compute.

For the linear framework given in this work, prescribing a
desired vicinity of the origin results in a straightforward
and easy-to-compute methodology. By the boundedness
of V (t) < ǫ, there exist R > 0 that depends on ǫ such
that ‖x‖ < R. Then one can design ǫ such that one
can obtain a desired vicinity of the origin. Considering
that R(ǫ) =

√

ǫ/λmin(P ), for a desired R > 0, choosing
ǫ < R2λmin(P ) will ensure the prescribed region.

3.3 Main Result

The proposed control approach can be summarized as
follows:

u(t) = −b(t)
−1

[κ(t)nu0(t) + Λ(t, x(t))sign(u0(t))] ,
(10)

4



where u0(t) = 1
2

(

1
γ + 1

)

eTnPΩ−1(t)x(t), and the

switching the function κ(t)

κ(t) =

{

1
α(T−t) if t < T1,

1 if t ≥ T1 .
(11)

and the adaptive gain Λ(t, x)

Λ(t, x) =

{

Γ(t) , if t < T1,
V

ǫ−V , if t ≥ T1 .

The time T1 > 0 denotes the first moment such that
x(T1) ∈ S ǫ

2
.

Theorem 8 Suppose that Assumption 1 is satisfied for
the closed-loop system (1)-(10) and let P be the solution
of (3). Given the predefined time T > 0 and a prescribed
barrrier width ǫ > 0, if α designed as (8), then the tra-
jectories of the system reach the set S ǫ

2
in a time T1 < T

for all x0 ∈ R
n, and will be confined in Sǫ for all t ≥ T1.

PROOF. The proof of this result is made in two steps:

A) First, it is proved that there exists a first moment
0 < T1 = t̄(x0) < T such that x(t) ∈ ∂S ǫ

2
with

S ǫ
2
= {x(t) ∈ R

n | V (x(t)) ≤ ε/2} where T > 0 is a
priori given.

B) Secondly, the ultimate boundedness of the trajec-
tories in that region is achieved through the barrier
function for all t > T1, independently of the per-
turbation’s upper bound.

Items (A) and (B) are consequences of Lemmas 5 and 7,
respectively. �

Remark 9 Notice that the structure of (10) is main-
tained for both stages and only the gains are switched.
However, this only switching causes a discontinuity in the
control signal. Therefore, the control law is essentially
bounded. It is bounded during the reaching phase (see
A.4) and barrier function phase where Γ(t, x) = V

ǫ−V ≤
σ1

ǫ−σ1

< ∞ (see proof of Lemma 7), except at t = t̄.

4 Simulation Example

Consider the Torsional spring damper system presented
in [4]:

j(t)θ̈(t) + bθ̇(t) + kθ = v(t) + ϕ(t) (12)

where j(t) is a time-varying inertia, v(t) is an input
torque and ϕ(t) is an external disturbance. In this sec-
tion, the tracking problem of a desired signal θd will be
addressed. For that purpose, define the tracking errors:

x1 = θ(t)− θd(t) and x2 = θ̇(t)− θ̇d(t) and the nominal
control input v(t) = u(t)+ b(x1 + θd)+ k(x2 + θ̇). Thus,
the error dynamics has the following form:

ẋ1 = x2

ẋ2 =
1

jm
[(1 + δj(t))u(t)] + j(t)

(

θ̈d(t) + ϕ(t)
)

.
(13)

where 1
j(t) = 1

jm
(1 + δj(t)) , jm is the nominal part of

the inertia, δj is the uncertainty in the inertia.

For the simulation, the desired trajectory θd(t) is de-
signed as in [36], considering a polynomial trajectory of
degree 5 from t = 0 to t = 10. The desired θ̇(0) = 0 and
θd(10) = 10, and θ̇d(0) = θ̇d(10) = θ̈d(0) = θ̈d(10) = 0 .
Simulation parameters are presented in Table 1.

Table 1
Simulation parameters.

Parameter Value

k 2.3375 N/m

j 0.2946 kg · m2

jm 0.0333 kg · m2

b 0.012195 N · s/m

α 0.1

γ 0.1

T 2

Three scenarios are tested in order to show the feasibility
of the proposed approach:

(1) In the first one, the barrier width is set to ǫ = 1.
(2) Second one shows the results with ǫ = 0.01.
(3) Finally, the value of the barrier is deacresed to ǫ =

1× 104.

All simulations were made with δj(t) = 3
4 sign(sin(t))

and the external disturbance ϕ(t) = cos(5t). The sam-
pling step is set 1×10−3 using Euler integration method

and the initial conditions were set to x(0) =
[

5 0
]T

. For

the control law in Theorem 8, matrix P is obtained as
the solution of Equation (3) with Q = I. The value of T
used for the three scenarios is fixed, as it is presented in
Table 1.

4.1 First scenario

In Figure 1 the results of the control law with ǫ = 1 are
presented. It can be seen that the tracking is near to the
desired angle θd, but not exactly the same. As the upper
bound of the settling time is designed as T = 2, the
trajectory converges to a neighborhood of the tracked
signal and remain nearby.
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Fig. 1. Tracking with ǫ = 1.
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Fig. 2. Tracking with ǫ = 1× 10−2.

4.2 Second scenario

For ǫ = 0.01 in Figure 2, the angle θ is really close to the
tracked desired signal. The control signal u(t) is follow-
ing the negative of the perturbation. Moreover, the gain
Λ(t, x) increases considerably with respect to the first
scenario. This is a intuitive consequence of the vicinity
being smaller.

4.3 Third scenario

Finally, Figure 3 presents the tracking selecting ǫ = 1×
10−4. This small neighborhood of the system’s origin is
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Fig. 3. Tracking with ǫ = 1× 10−4.

achieved by means of a small barrier width. Nonetheless,
a small choice on the barrier width may induce noise in
the control signal (see Figure 3). This illustrates that,
although ǫ can be as small as desired, the sampling step
must taken into account in the choice of ǫ.

5 Experimental result

Consider the Furuta pendulum presented in [29] as:

(

mpL
2

2
+

1

4
mpL

2

p cos
2
(θp) + Jr

)

θ̈r −

(

1

2
mpLpLr cos(θp)

)

θ̈p

+

(

1

2
mpL

2

p sin(θp) cos(θp)

)

θ̇r θ̇p +

(

1

2
mpLpLr sin(θp)

)

θ̇
2

p = τ

−

1

2
mpLpLr cos(θp)θ̈r +

(

Jp +
1

4
mpL

2

p

)

θ̈p −

1

4
mpL

2

p cos(θp) sin(θp)θ̇
2

r

−

1

2
mpLpg sin(θp) = 0

where θr and θp are the angles for the arm and the pen-
dulum, respectively, the parameter mp is the mass of the
pendulum, Lp and Lr are the lengths of the pendulums
and arm and Jr is the inertia of the arm. One can com-
pute the torque-voltage (input to the motor Vm) conver-
sion as:

τ =
ηgKgηmkt

(

Vm −Kgkmθ̇r

)

Rm
. (14)

where ηg,Kg, kt, Rm, ηg are motor parameters. For z1 =

θr, z2 = θp, z3 = θ̇r and z4 = θ̇p, linearising around

the point zT =
[

0 0 0 0
]

with z being a vector of the
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elements zi, it yields to a form ż = Az+Bτ with matrices

A =
1

JT















0 0 1 0

0 0 0 1

0 1
4mpL

2
pLrg 0 0

0 1
2mpLpg(Jr +mpL

2
r) 0 0















,

B =
1

JT















0

0

Jp +
1
4mpL

2
p

1
2mpLpLr















and JT = JpmpL
2
r+JrJp+

1
4JrmpL

2
p. One can then find

a matrix transformation W =
[

B AB A2B A3B
]

Hk,

where Hk is a Henkel matrix with the elements of the
characteristic polinomial ofA, such that the system is led
to the controller form, then taking x = Wz, the system
will be in the required form if τ = −τnx3 + u, where
τn = 0.1112 is a constant depending on the parameters of
the plant. The parameters proposed for the experiment
where is solution of (3) with γ = 0.45 and Q = I and to
satisfied condition (8), α = 0.002. The integrator intial
condition Γ(0) = 0 and the sampling step provide of
1ms, the following two scenarios where tested in the
Furuta pendulum system by Quanser Inc®. Note that
the input of the pendulum system is saturated from u ∈
[−10, 10] volts to the motor, with the relation given by
(14).

5.1 For different upperbound of the settling time

In this subsection, the initial condition is the same for
both cases θp(0) = 0.5, setting ǫ = 10 and the upper
bound of the settling time is selected T = 0.5 and T =
0.2. It can be seen from Figure 6 that both of the settling
time bounds are maintained to the desired vicinity of
the origin by means of the function V (t).

5.2 For different prescribed neighborhood

Additionally, initiating from θp(0) = 0.3 and setting
T = 1, the next demonstration is the capability of the
approach in order to prescribe different values for the
ǫ-vicinity of the origin of V = 0. It can be seen from
Figure 7 that for the ǫ = 0.5, the vicinity of the ori-
gin for the angle of the pendulum θp is smaller, near to
5 × 10−3 rad, than the angle for ǫ = 1, that is around
0.015 rad. As well as subsection V.A, from Figure 9, it
can be seen that the states converge to the prescribed
ǫ-vicinity of the origin of V (t) = 0 before the predefined
time T = 1, and the moment of the switching is rep-
resented by the yellow line, where V = ǫ/2. The video
of the experiments can be found in the following link
https://www.youtube.com/shorts/1mOcnIYYLLs.

Fig. 4. Angles for different values of T starting from
θp(0) = 0.5.
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Fig. 5. control signal and gain Λ(t) for different values of T
starting from θp(0) = 0.5.

Note also that from Figure 9, it can be seen that the
transitory behavior from the experiment with ǫ = 0.5
in the sense of the Lyapunov function is considerably
better than the one with ǫ = 1, where the overshoot in
V (t) is near 6.

6 Conclusion

A Lyapunov redesign methodology is proposed to con-
fine a trajectory of the system modeled by the perturbed
chain of integrators in the prescribed vicinity of origin
in a predefined time, even for the case when the upper
bound of perturbation exists but is unknown. The effi-
cacy of the proposed approach is illustrated through the
simulations for the spring-mass model and experiments
with the Furuta pendulum.
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Fig. 6. Values of V (t) for different values of T starting from
θp(0) = 0.5.

Fig. 7. Angles for different values of ǫ with θp(0) = 0.3 and
T = 1.
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A Technical proofs

A.1 Proof of Proposition 3

For the closed-loop system (1)-(2) of the form

ẋ(t) = Jnx(t)−
1

2

(

1

γ
+ 1

)

(1+δb(t))ene
T
nPx(t)+enf(t) ,

(A.1)
consider the Lyapunov function candidate V (x) =
x(t)TPx(t), its time derivative along the trajectories of
(A.1) yields to

V̇ (x) = x(t)T
[

JT
n P + PJn

]

x(t) + 2f(t)eTPx(t)

−

(

1

γ
+ 1

)

(1 + δb(t))x
T (t)Pene

T
nPx(t)

(A.2)
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Using the bound |δb(t)| ≤ εb < 1 from Assumption 1
and 3, the following upper bound of V̇ (x) is found:

V̇ (x) ≤ x(t)T
[

PJn + JT
n P −

(

1

γ
+ 1

)

(1− εb)Pene
T
nP

]

x(t)

+ 2x(t)TPenf(t) .
(A.3)

Let us analyze when the following will happen:

(

1

γ
+ 1

)

(1− εb) = γ , ⇒ εb = 1−
γ2

1 + γ
(A.4)

where we can parameterize the bound εb by choosing γ
in order to compensate the effect of the uncertain coef-
ficient. Note that this bound will hold as long as εb < 1.
On the other hand, if there does not exist the effect
of the perturbation, γ can be chosen as the solution of

1+γ−γ2 = 0, which is γ = 1+
√
5

2 . If that is the case, then

for γ ∈
(

0, 1+
√
5

2

]

, the following upper bound is fulfilled

V̇ (x) ≤ x(t)T
(

PJn + JT
n P − γPene

T
nP

)

x(t)

+ 2x(t)TPenf(t)

= −x(t)TQx(t) + 2x(t)TPenf(t)

where we used the equality in (3). By using the upper
bound of |f(t)| ≤ M in Assumption 1, the following
bound can be obtained by applying the Cauchy-Schwarz
and Rayleigh-Ritz inequalities

V̇ (x) ≤ −λmin(Q)‖x(t)‖2 + 2M |x(t)TPen| (A.5)

Notice that the second term in the right-hand side of the
above inequality can be further amplified by using the
Cholesky decomposition [15]. There exist R such that
P = RRT and |x(t)TRRT en| ≤ ‖x(t)TR‖‖RTen‖. From

the fact that ‖x(t)TR‖ = V (x)1/2 ≤ λ
1/2
max(P )‖x(t)‖ and

‖RT en‖ ≤ V (en)
1/2 ≤ λ

1/2
max(P )‖en‖ = λ

1/2
max(P ). It fol-

lows that,

V̇ (x) ≤ −λmin(Q)‖x(t)‖2 + 2Mλmax(P )‖x(t)‖ (A.6)

Hence, the foregoing inequality can be rewritten as

V̇ (x) ≤ −(1− θ)λmin(Q)‖x(t)‖2 , ∀ ‖x(t)‖ ≥ µ

where 0 < θ < 1 and µ = 2Mλmax(P )
θλmin(Q) . It follows from

Theorem 4.18 in [18] that there is T ∗ := T ∗(µ, x0) such
that the solution of the closed-loop system (A.1) is uni-
formly bounded, for all t ≥ T ∗ and an initial state x(0)
with ultimate bound given by (4). �

A.2 Proof of Proposition 4

For the closed-loop system (1)-(5) of the form

ẋ(t) = Jnx(t)−
1

2

(

1

γ
+ 1

)

(1 + δb(t))ene
T
nPx(t)

− enρ(t, x)(1 + δb(t))sign

(

1

2

(

1

γ
+ 1

)

eTnPx(t)

)

+ enf(t) (A.7)

consider the Lyapunov function candidate V (x) =
x(t)TPx(t). Using similar arguments as in the proof
Proposition 3, the time derivative of V (x) along the
trajectories of system (A.7) accepts the following upper
bound

V̇ (x) ≤ −λmin(Q)‖x(t)‖2+2xT (t)Penf(t)−2xT (t)Pen

×

[

ρ(t, x)(1 + δb(t))sign

(

1

2

(

1

γ
+ 1

)

eTnPx(t)

)]

(A.8)

by using the upper bounds in Assumption 1 and choos-
ing ρ(t, x) ≥ M/(1 − εb), the above expression can be
rewritten as follows

V̇ (x) ≤− λmin(Q)‖x(t)‖2 − (1− εb)ρ(t, x)|2e
T
nPx(t)|

+M |2eTnPx(t)|

≤ −λmin(Q)‖x(t)‖2 ≤ −
λmin(Q)

λmax(P )
V (x)

(A.9)
where we applied the Cauchy-Schwarz and Rayleigh-
Ritz inequalities. The above inequality accepts the

solution V (x) ≤ exp (− λmin(Q)
λmax(P ) t)V (x0), equivalently,

‖x(t)‖ ≤
√

λmax(P )
λmin(P ) exp (−

λmin(Q)
2λmax(P ) t)‖x0‖. Hence, the

time T̄ ∗ required for a trajectory starting at x0 to reach
the value 0 < µ∗ < ‖x0‖ is given by

T̄ ∗ = 2λmax(P )
λmin(Q) ln

(

√

λmax(P )
λmin(P )

‖x0‖
µ∗

)

.

A.3 Proof of Lemma 5

If x(t0) ∈ S ǫ
2
, set t̄(x0) = 0 and the proof is done. As-

sume that this is not the case, i.e., x(t0) ∈ Sc
ǫ
2

. By us-

ing the time varying coordinate transformation in [12],
x = Ω(t)y,

Ω(t) = diag(1, κ(t), κ(t)2, . . . , κ(t)n−1) (A.10)
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where κ(t) = 1
α(T−t) , α ∈ (0, 1), the perturbed chain of

integrators (1) yields to

ẏi = α(1 − i)κ(t)yi + κ(t)yi+1, 1 ≤ i ≤ n− 1

ẏn = α(1 − n)κ(t)yn + κ(t)1−n [b(t)(1 + δb(t))u(t) + f(t)]

Now take the time scaling t(τ) = T (1− e−ατ ), by using
the chain rule d

dtyi
dt
dτ , where dt

dτ = αT e−ατ =: κ(τ)−1,
one has

y
′

i = ẏiκ(τ)
−1 = −α(i− 1)yi + yi+1, 1 ≤ i ≤ n

y
′

n = −α(n− 1)yn + κ(τ)−n [b(τ)(1 + δb(τ))u(τ) + f(τ)]

or equivalently in compact form

y
′

(τ) = Ay(τ) + enκ(τ)
−n [b(τ)(1 + δb(τ))u(τ) + f(τ)]

(A.11)
where A = Jn +αDα, and Dα = diag(0, −1, . . . ,−(n−
2),−(n − 1)). After applying the time scaling, the first
part of the control law in (10) is given by

u(τ) =−
1

2

(

1

γ
+ 1

)

b(τ)−1eTnPy(τ)κ(τ)n

− Γ(τ)sign

(

1

2

(

1

γ
+ 1

)

eTnPy(τ)

) (A.12)

with the adaptive gain

Γ′(τ) = |eTnPy(τ)|κ(τ)−n , (A.13)

the closed-loop system has the form:

y′(τ) = Ay(τ)−
1

2

(

1

γ
+ 1

)

(1 + δb(τ))ene
T
nPy(τ)

−κ(τ)−n
(

Γ(τ)(1 + δb(τ))sign(γ̃e
T
nPy(τ)) − f(τ)

)

en
(A.14)

where γ̃ = 1
2

(

1
γ + 1

)

. Consider the Lyapunov V̄ (τ) =

V1(τ) + V2(τ) where

V1(τ) = y(τ)Py(τ), V2(τ) = (1− εb)(Γ(τ) − Γ∗)2

(A.15)
and Γ∗ = M/(1− εb).

• For V1(τ), its time derivative along the trajectories of
(A.14) yields to

V ′
1(τ) = yT (τ)Py′(τ) + (y(τ)′)TPy(τ)

≤ yT (τ)
(

PA+ATP
)

y(τ) − 2κ(τ)−n [Γ(τ)(1 − εb)

−M ] |eTnPy(τ)| −

(

1

γ
+ 1

)

(1 + δb(τ))y(τ)
TPene

T
nPy(τ)

where we used the bounds for the perturbation terms in
Assumption 1. Similarly than in the proof of Proposition
3, the following upper bound is satisfied

V ′
1(τ) ≤ y(τ)T

(

PA+ATP − γPene
T
nP

)

y(τ)

− 2κ(τ)−n(1− εb) (Γ(τ) − Γ∗) |eTnPy(τ)| .

Finally, since 1−δb(τ)
2 > 0 by Assumption 1 and taking

the solution of (3)

V ′
1(τ) ≤ −λmin(Q)‖y(τ)‖2 + 2αyTDαPy

− 2κ(τ)−n(1− εb) (Γ(τ)− Γ∗) |eTnPy(τ)|

≤ −λmin(Q)‖y(τ)‖2 + 2α(n− 1)λmax(P )‖y(τ)‖2

− 2κ(τ)−n(1− εb) (Γ(τ)− Γ∗) |eTnPy(τ)|

and therefore, if α is selected as (8), then there exist
ᾱ > 0 such that

V ′
1(τ) ≤ −ᾱ‖y(τ)‖2

− 2κ(τ)−n(1− εb) (Γ(τ)− Γ∗) |eTnPy(τ)| (A.16)

• For V2(τ), its time derivative along the solution of
(A.13) yields to

V ′
2(τ) ≤ 2 (1− εb) Γ

′(τ) [Γ(τ) − Γ∗] (A.17)

= 2κ(τ)−n(1− εb) (Γ(τ) − Γ∗) |eTnPy(τ)| ,

From the upper bounds in (A.16) and (A.17), then V̄ ≤
−ᾱ‖y‖2 = −W (y(τ)) ≤ 0. This implies that V̄ (τ) ≤
V̄ (0), hence y(τ) and Γ(τ) are bounded. Noticing that
∫∞
0

W (y(s))ds ≤ V̄0 − limτ→∞ V̄ (τ) < ∞. On the other
hand, from the continuity of W (y(τ)), and uniform con-
tinuity (this follows by noticing that the time derivative
of y(τ) is bounded, using Assumption 1, each term in
the time derivative (A.14) is bounded) and boundedness
of y(τ), then W (y(τ) is uniformly continuous. By using
Barbalat’s Lemma [18], then W (y(τ)) → 0 as τ → ∞,
this implies that y(τ) reaches the set {‖(y(τ))‖ = 0} as
τ grows unbounded. Hence, by continuity, there exists
a time τ̄ (y(0)) < ∞ such that the solution reaches any
neighborhood of the zero. Equivalently, after using the
inverse time scale transformation τ(t) = − 1

α ln(1 −
t
T ),

the solution x(t) = Ω(t)−1y(t) reaches any neighbor-
hood of zero in a time t̄(x0) = limτ→τ̄ Tc(1− e−τ ) < T .
The proof is complete after setting the time t̄ as the time
when x(t) reaches the boundary of the set S ǫ

2
.

A.4 Boundedness of control law during reaching phase

One can proceed to prove that the control law (10) is
bounded by noticing that it accepts the following upper
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bound

|u(t)| ≤ b−1[κ(t)n|u0(t)|+ Γ(t)] (A.18)

Then, we proceed to prove that each summand on the
right hand side in the above expression is bounded in
the following two steps.

Step 1. For the first summand, consider the closed-loop
system in the scaled-time (A.14), and the Lyapunov-like
function V1(τ) = yT (τ)Py(τ). The time derivative of
V1(τ) along the trajectories of (A.14) satisfies the upper
bound (A.16), which can be further overestimated as
follows

V
′

1 ≤ −ᾱ‖y(τ)‖2−2κ(τ)−n(1−εb) (Γ(τ) − Γ∗) |eTnPy(τ)|

Since every symmetric matrix has a unique Cholesky
decomposition [15], i.e., P = RRT > 0, with R a lower
triangular matrix with real and positive diagonal entries,
hence

|yT (τ)Pen| = |yT (τ)RRT en| = |ȳT (τ)B|

where the vectors ȳ(τ) = RT y(τ) and B = RT en sat-
isfy |ȳ(τ)| = yT (τ)Py(τ)1/2 and |B| = (eTnPen)

1/2, re-
spectively. By using the Cauchy-Schwarz inequality, the
term |eTnPy(τ)| accepts the following upper bound

|eTnPy(τ)| ≤ |ȳ(τ)||B| ≤ |B|V 1/2(τ)

Hence, using the above expression and Rayleigh-Ritz in-
equality,

V
′

1 (τ) ≤ −ᾱ‖y(τ)‖2 + 2κ(τ)−n(1− εb)Γ̄|e
T
nPy(τ)|

≤ −c0V1(τ) + 2c1 exp (−c2τ)V
1/2
1 (τ)

where c0 = ᾱ
λmax(P ) , c1 = αnT n(1 − εb)Γ̄|B|, and c2 =

nα. The existence of Γ̄ > 0 follows from Γ(τ) being
bounded, see the arguments in proof of Lemma 5. Follow-
ing the same arguments used in the proof of Claim 11 in
[9] it can be concluded that there exist c5 > 0 such that
‖y(τ)‖ ≤ c5. Since κ(τ)n ≤ κ(τ̄)n < ∞ is bounded, then
the product b−1κ(τ)n|u0(τ)| ≤ b−1κ(τ̄ )n‖en‖‖P‖‖y(τ)‖
is also bounded. Since the time scalings are invertible,
for each τ ∈ [0, τ̄ ] the same bound for y(τ) holds for x(t)
in the interval t ∈ [0, t̄]. Thus, one can find cκ > 0 such
that b−1κ(t)n|u0(t)| ≤ b−1cκ on t ∈ [0, t̄].

Step 2. The boundedness of the second summand fol-
lows from the Proof of Lemma 5, it is shown that there
exists a constant c6 > 0 such that |Γ(t) − Γ∗| < c6,
thus the following bound holds |Γ(t)| ≤ |Γ(t) − Γ∗| +
|Γ∗| < c6 + Γ∗. The second summand can be bounded
by b−1Λ(t, x(t)) ≤ b−1(c6 + Γ∗) < ∞ on t ∈ [0, t̄].

From Step 1 and Step 2, one can conclude that the con-
trol law accepts the upper bound |u(t)| ≤ b−1(cκ + c6 +
Γ∗) < ∞ on t ∈ [0, t̄].

A.5 Proof of Lemma 7

Consider the Lyapunov function candidate V along the
trajectories of the system

ẋ = Jnx+ enf(t)

− en(1 + δb(t))(γ̃e
T
nPx+ k(V )sign(γ̃eTnPx)) ,

(A.19)

where γ̃ = 1
2

(

1
γ + 1

)

, yields

V̇ = 2xTP [Jnx+ f(t)]

− 2xTPen
[

(1 + δb(t))(γ̃e
T
nPx+ k(V )sign(γ̃eTnPx))

]

(A.20)

Similarly that in the proof of Proposition 3, one can
prove that the time derivative of V along the trajec-
tories of ẋ = Jnx − enγ̃(1 + δb(t))e

T
nPx satisfies V̇ ≤

−λmin(Q)‖x(t)‖2 with P solution of (3). Defining Φ =
M

1−εb
and the barrier function k(V ) = V

ǫ−V , the deriva-
tive of V has the form

V̇ ≤− λmin(Q)‖x(t)‖2

− 2(1− εb)
∣

∣xTPen
∣

∣

[

V

ǫ− V
− Φ

]

.
(A.21)

Since ǫ − V > 0 as V tends to ǫ, then
∣

∣

∣

V
ǫ−V − Φ

∣

∣

∣
<

RV := 1 + Φ, then it is implied by (A.21) that V̇ ≤

−β1V (x)+β2V
1

2 with β1 = λmin(Q)/λmax(P ) and β2 =

2 [(1− εb)λmax(P )RV ] /
√

λmin(P ), which implies that
from the first time t0, the trajectories of the system does
not escape of the set S ǫ

2
in a finite time. Let us define

the variable

σ1 :=
Φ

1 + Φ
ǫ (A.22)

from we will prove that ǫ > V (x) > σ1. From the
definition of function k(V ), it follows that there exist
k(V ) > k(σ) = Φ, and it is implied that

V̇ ≤ −‖x(t)‖2 − (1 − εb)ξ
∣

∣2x(t)TPen
∣

∣ ≤ −‖x(t)‖2

(A.23)
where ξ = k(V ) − Φ > 0. Then, the trajectories of the
closed-loop system converge to the level set V ≤ σ1.
This means that for all t ≥ t0 the inequality V ≤ σ1 is
satisfied. By construction of (A.22), it follows that V < ǫ
for all t ≥ t0, this completes the proof.
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