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Topological orders emerge in both microscopic quantum dynamics and macroscopic
materials as a fundamental principle to characterize intricate properties in nature with
vital significance, for instance, the Landau levels of electron systems in magnetic field.
Whilst, recent advances of synthetic photonic systems enable generalized concepts of
Landau levels across fermionic and bosonic systems, extending the modern physical
frontier. However, the controls of Landau levels of photons were only confined in
complex artificial metamaterials or multifolded cavities. Here, we exploit advanced
structured light laser technology and propose the theory of high-dimensional frequency-
degeneracy, which enables photonic Landau level control in a linear open laser cavity
with simple displacement tuning of intracavity elements. This work not only create
novel structured light with new topological effects but also provides broad prospects
for Bose-analogue quantum Hall effects and topological physics.

Two-dimensional (2D) electron systems subjected to
magnetic fields form Landau levels with quantized topo-
logical orders, which is regarded as a basic model in
modern quantum physics and hatched several scientific
branches such as topological insulators [1–4], anyon col-
lisions [5, 6] and twistronics [7, 8]. Whilst, recent ad-
vances of synthetic quantum materials highlighted so-
phisticated photonic systems to emulate the properties
of electrons [9], such as dielectric photonic crystals [10–
12], continuum photon fluids [13, 14], and optical topol-
ogy [15–17], merging the fermionic and bosonic sys-
tems and promoting physical frontier of quantum sim-
ulation [18]. Now, Landau levels can be further gen-
eralized beyond original fermionic systems into bosonic
even anyonic systems [19–22], relying on elaborate pho-
tonic crystal designs [19, 20] or expensive superconduc-
tors [21]. In addition to the solid-state systems, the
Landau levels of free-space photons were also theoret-
ically proposed and experimentally demonstrated [22],
showing emergent breakthroughs in extending frontier of
fundamental physics. For instance, the photonic Lan-
dau levels were utilized in topological characterization
of electromagnetic and gravitational responses [23] and
photonic crystals [24], exploration of light-matter inter-
action regarding exotic polaritons [25, 26], and emulation
of quantum Laughlin matter [27, 28]. However, the cre-
ation and control of photonic Landau level control is still
a huge challenge. The only existing way to do this is
using a spatially multifolded laser resonators, with re-
quire very precise and complicated control of non-planar
geometry to manipulate cyclotron behavior of confined
photons [22]. The new physics and compact source for
photonic Landau levels are highly desired for unlocking

more potential practical applications, while the advanced
structured light laser could provide a method to engineer
twisted light and break the optical chiral symmetry [29].

Here, we propose a new mechanism to distribute pho-
tons (the structured modes) in Landau levels via a
compact laser cavity, where the distribution of high-
dimensional frequency-degenerate structured modes is
created as the analogy of Landau levels. The crucial step
of our method is designing the effective magnetic fields
for the structured modes by exploiting intracavity astig-
matic mode convertor to twist structured light modes
in the cavity. Via simply manipulating the linear dis-
placement of cavity elements, the structured laser modes
can be emitted in discrete frequency degenerate states,
which fulfills the same Hamiltonian in specific conditions
of Landau energy levels. We also experimentally observe
the Landau quantization corresponding to a series of ex-
otic orbital angular momentum (OAM) laser modes in
different photonic Landau energy levels. Our method
could distribute structured modes with different orders
in photonic Landau levels flexibly by only tuning the lin-
ear displacement of cavity elements. Our work unveils
the possibility to map various nontrivial topological ef-
fects into the structured modes, such as Aharonov-Bohm
effect, topological edge states, Zeeman effect and quan-
tum Hall effect, providing a physical insights for electron-
photon analogies.

RESULTS

Concept. When applying a uniform magnetic field to
an electron system, the electrons can only occupy dis-
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FIG. 1: Laudau levels of electrons and photons. a, In a 2D electronic system under a uniform magnetic field B
(perpendicular to the paper pointing outwards), an electron with charge of −e and mass of m can rotate along discrete circle
orbits (orange, green, and blue dashed lines, with energy of E1, E2 and E3, respectively) at velocity of v driven by Lorentz
force of FB . b, With the increasing of magnetic field, discrete energy levels E1, E2 and E3 form with constant spacing of ℏωc

and quantum numbers, n = 0, 1, 2, 3, · · · , where the highest number is subjected to the Fermi energy EF . c, In the uncharged
particle system, the reference system is a rotating system with the angular velocity ω with direction perpendicular to the paper
pointing inwards, in which, a particle rotates at velocity of v′ along the circle orbits is driven by Coriolis force of Fco, analogue
to the Lorentz force in a. According to the similarity to the quantized energy levels of electron cyclotron orbits in a, the
effective charge −e′ and mass m′ of the uncharged particle, and the effective magnetic field B′ (perpendicular to the paper
pointing outwards) can be derived. d, Besides the Coriolis force, the centrifugal force Fce is also introduced in the rotating
reference system. As the centrifugal force is gradually converging to 0, the energy levels evolve from the independent oscillators
to an energy-degenerate state. e, As the photonic system, the rotating system is introduced by the designed laser cavity with
two nonparallel cylindrical lenses inside (angle between two lines generatrices are marked as θ). By tuning the displacements
of elements (indicated by “⇌”), the effective centrifugal force Fce can be tuned to 0 and Landau levels can be excited. The
wave functions of these Landau levels En corresponds to various laser mode patterns, shown in the right orange, green, blue
circles, and the highest energy level is subjected to the gain aperture Egain, analogue to the Fermi Energy EF in b.

crete cyclotron orbits, i.e. Landau energy levels, and this
process is called Landau quantification. For instance,
an electron rotating with the velocity v in the magnetic
field B is driven by the Lorentz force pointing to the
center of the orbits, see Fig. 1a. The Hamiltonian of
this system is given by H = (p− eA)

2
/(2m) based on

the Fock–Darwin model [30, 31], where p is the canoni-
cal momentum operator, A is the electromagnetic vector
potential, −e and m are the charge and mass of the elec-
trons, respectively. With the different values of cyclotron
angular velocity ωc, the electrons rotate on discrete or-
bits corresponding to different energy levels En where
En = (n+1/2)ℏωc (n = 0, 1, 2, · · · ). The spacing between
any pair of adjacent energy levels is a constant ℏωc where
ωc = eB/m, as shown in Fig. 1b, and the highest energy
level is determined by Fermi energy, EF = ℏ2k2F /(2m)
(kF is the Fermi wave vector), of the electron system.

The fundamental model can be generalized from elec-
tron systems to uncharged particle systems [22]. For a

charge-neutral particle with an introduced rotating co-
ordinate system in cyclone velocity ω (Fig. 1c), the par-
ticles with relative rotational motion of this coordinate
system are driven by the Coriolis force Fco, which can
be analogous to the equivalent Lorentz force with a syn-
thetic magnetic field B′. Thus, the synthetic Landau
levels can be achieved. Besides the Coriolis force, the
centrifugal force Fce is also introduced with the rotating
coordinate system. The Hamiltonian can thus be writ-
ten as H = (p− e′A′)

2
/(2m) − Ω · L, where A′ is the

synthetic magnetic field potential corresponding to B′,
Ω is the angular velocity, L is the angular momentum,
and −Ω · L = 1

2mω2
trapr

2 corresponds to the centrifu-
gal force, where ωtrap is the trapping frequency (corre-
sponding to the marked ω physically in Fig. 1c) related
with the centrifugal force, and r is the particle’s trans-
verse position vector. The introduction of the centrifugal
force changes the energy levels of the system and keeps
them away from degeneracy. When the Fce and ωtrap
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are gradually converging to 0, the Hamiltonian becomes
the mathematically same with that of the electronic sys-
tem, and the harmonic potential is flattened in Fig. 1d to
achieve the Landau levels. Noted that the ωtrap is arsed
by the centrifugal force, which acts against the hypothet-
ical centripetal force. Therefore, ωtrap could converge to
0 if a real force is introduced to act as the centripetal
force.

The photonic system as a charge-neutral particle sys-
tem, its synthetic Landau level can be achieved in a ju-
diciously designed laser cavity as Fig. 1e. In the cavity,
a pair of cylindrical lenses (with an angle difference θ be-
tween their principal axes) was introduced, which acted
as an intracavity astigmatic convertor to excite the high-
order structured modes [32, 33]. The excited modes are
ray-wave geometric beams that the intensity distribution
is located on several discrete rays, which could be rep-
resented by the schematic arrows, as shown in Fig. 1e.
The oscillating laser rays would rotate around the prin-
cipal axis of the cavity, then a rotating reference system
could be introduced to analyze the oscillating rays in the
cavity. The hypothetical centripetal Fce could be intro-
duced in the rotating reference system. The hypothet-
ical centripetal force could be regarded as the effective
Lorentz force in an electron system, where the effective
magnetic field B′ is along the principal axis of the cav-
ity. The cavity with the intracavity astigmatic convertor
could be regarded as a harmonic oscillator, where the
eigenmodes corresponding to various energy levels are
shown in Fig. 1d. The hypothetical centrifugal force Fce

can be tuned to 0 by manipulating the cavity mirrors
and the cylindrical lenses, as shown in the black dou-
ble arrows ⇌ in Fig. 1b, to achieve the synthetic Lan-
dau level. The excited modes could be decomposed to
a superposition of frequency-degenerate eigenmodes, i.e.
several eigenmodes with the same frequency but different
indices. The excited modes are the analogy of the quan-
tum states in the synthetic Landau levels. The quan-
tum wave functions in different synthetic energy levels
En correspond to the excited mode in different frequency-
degenerate states, which could be tuned by manipulating
the off-axis displacement of cavity elements. The tun-
able excited modes are shown in the right orange, green,
blue circles in Fig. 1e, where the gain aperture limits the
highest energy level occupied by photons Egain, as the
effective Fermi energy.

Electron-photon analogy. For a clear view, the
electron-photon analogies between the quantized elec-
trons and the structured modes are summarized in the
Table. I. The motion of electrons in the magnetic field
B is driven by the Lorentz force, where the cyclotron
orbits are quantized corresponding discrete energy lev-
els, i.e. the Landau level En. The difference of Lan-
dau level is a constant related to the frequency space ωc.
While the motion of the photons (the structured modes)
in the synthetic magnetic field B (the high-dimensional

frequency-degenerate cavity) is driven by the hypotheti-
cal centripetal force, where the frequency of the excited
modes are quantized corresponding discrete energy levels
En, i.e. the analogy of the Landau level. The difference
of photonic energy level is a constant related to the fre-
quency space ω′

c. The core point of this analogy is the
discrete energy level, as discussed in follows.

TABLE I: The electron-photon analogies between the quan-
tized electrons and the structured modes.

Term Quantized electrons Structured modes

Particle Electrons Photons

Force The Lorentz force The centripetal force

Magnetic field Real field B Synthetic field B′

Frequency ωc = eB/m ω′
c

Energy level En = (n+ 1/2)ℏωc En = (n+ 1/2)ℏω′
c

High-dimensional frequency-degenerate cavity.
The photonic Landau levels could be achieved in exper-
iment by controlling the designed frequency-degeneracy
condition of the structured laser cavity. The frequency
spectrum of the excited structured modes in the cav-
ity is expressed as fn,m,l = fz[l + (n + 1/2)fx/fz +
(m + 1/2)fy/fz], where (n,m, l) and (fx, fy, fz) are the
mode indices and the frequency spaces along x, y, z−
directions. The frequency-degeneracy condition refers
that the modes with different indices have the same fre-
quency, i.e. ∆fn,m,l = fn,m,l − fn0,m0,l0 = 0, where
(n0,m0, l0) are the initial mode indices. As a simple
case that fx = fy = f0, Fig. 2a shows the frequency
spectrum corresponding to a plano-concave cavity [34–
36], where the laser mode frequency spacing is given as
∆fn,m,l = [(n − n0) + (m − m0)]f0 + (l − l0)fz. The
frequency-degeneracy condition requires f0/fz = P/Q
(P and Q are coprime) and l0 − l = PK, n − n0 = pK,
m − m0 = qK and p + q = Q, where K is an inte-
ger and P/Q is determined by the cavity length L as
L = R tan(πP/Q)/2, R is the curvature of the concave
mirror. ∆f0

∆fz
can also be obtained based on the ABCD

matrix (Supplementary Material).

Each line in Fig. 2a1 represents the frequency evolu-
tion of a certain eigenmode by tuning the cavity length.
At the special cavity lengths, marked by the black arrows
in Fig. 2a1, several lines converge at one point, which
means the frequency-degeneracy has occurred. These
eigenmodes corresponding to the converging lines have
the same frequency, could be coherently superposed. The
superposed modes usually exhibit that the intensity dis-
tribution are located on several discrete rays, which are
usually called ray-wave beams [37, 38]. For instance,
the simulated geometric modes (superposed by Laguerre-
Gaussian (LG) eigenmode) are inserted in Fig. 2a1. The
zoom-in of the frequency spectrum at a special cavity
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FIG. 2: Frequency degeneracy. a1, 1D frequency spectrum versus cavity length (L) of a conventional confocal cavity, where
a series of frequency-degenerate states can be observed with theoretical emitting OAM geometric modes marked correspond-
ingly, by tuning L. a2, The zoom-in of a special degenerate state of P/Q = 1/3, where the frequency lines correspond to
various eigenmodes with different transverse and longitudinal mode indices (selective HG mode patterns corresponding to the
highlighted red lines are marked). At a frequency-degenerate state (intersection point of a set of eigenmodes), the set of eigen-
modes can be superposed together into a coherent state (left-bottom inset). By introducing OAM to the modes (converting
HG bases into LG), the OAM geometric modes can be generated with exotic multi-petal patterns, and such patterns can be
used to identify the types of degenerate states (different P/Q ratio). b, High-dimensional frequency spectrum b1, versus length
parameters d1 and d3, which are tuned respectively, to generate different frequency-degenerate states. The frequency lines
correspond to the eigenmodes with different 2D transverse mode and a longitudinal mode indices, and cross sections in the
blue and orange frames are selected. b2, The cross section at d3 = 16.15 mm shows different frequency-degenerate states with
(p1, q1) = (4,−1), (p2, q2) = (4, 0) and (p3, q3) = (4, 1) at specific values of d1 marked by the arrows. b3, The cross section at
d3 = 16.1 mm where the different frequency-degenerate states with (p4, q4) = (4,−1), (p5, q5) = (4, 0) and (p6, q6) = (4, 1) at
specific values of d1 marked by the arrows. The LG-based superposed geometric modes corresponding to different degenerate
families were marked on the right. b4,b5, The zoom-in inserts of figures b2 and b3 at degenerate states, (p5, q5) = (4, 0) and
(p2, q2) = (4, 0), marked by the red and blue arrows.

length with P/Q = 1/3 is shown in Fig. 2a2, where
red lines are selected as the example. These discrete
lines corresponds to a collection of eigenmodes with var-
ious indices but the same frequency. The indices spaces
(n− n0,m−m0, l0 − l) are also labeled in Fig. 2a2. The
superposed eigenmodes based on HG and LG modes are
exhibited in the left and right areas, which can be con-
verted to each other via an astigmatic mode converter.

The photonic Landau levels. For the photons in a fre-
quency degenerate cavity with fx = fy = f0, their energy
level could be expressed as EN,l0 = [l + (N + 1)P/Q]]fz
where N = n0+m0. The energy level difference between
two adjacent frequency degenerate modes is ∆E = fz for

a fixed N or ∆E = (P/Q)fz for a fixed l0, i.e. the en-
ergy level of the frequency-degenerate is discrete with a
constant difference, analogous to the Landau levels, thus
called the photonic Landau levels.

Besides, the photonic Landau levels can be generalized
into high dimensions in our newly designed cavity with
the intracavity mode convertor, where the displacement
of various cavity elements can provide multiple synthetic
degrees of freedom (DoFs). Figure 2b shows the exam-
ple that the frequency degenerate spectrum versus two
synthetic DoFs, where d1 and d3 are the tunable lengths
labeled in Fig. 1e, respectively. In high-dimensional de-
generacy, fx ̸= fy. Thus, the eigenmode frequency spaces
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FIG. 3: Experimental results. a, Our experimental cavity design for synthetic Landau levels, which is built with two cavity
mirrors (R1 and R2, Radius of curvature are R1 and R2), the gain crystal Yb:CALGO, and a pair of cylindrical lenses (focal
lengths: f) with rotating angles α1 and α2 (the x′-direction parallel to index t of generated HG modes set as the 0 degree
baseline. The distances among R2, the two cylindrical lenses, and R1 are d1, d1, and d3, respectively. The synthetic magnetic
field can be controlled by tuning d1 and d3. The orders of HG modes can be controlled by tuning ωtrap. Another mode converter
composed of a pair of cylindrical lenses outside the cavity is used to convert the OAM of output mode, from A to B, with
simulated and experimental patterns shown in the right insets. b, A cross-section of high-dimensional frequency spectrum of
the cavity is at d3 = 16.1 mm, and at the frequency-degenerate position (DP), different groups of lines (red lines and purple
lines) correspond to different Landau levels which can be tunable with ωtrap, and their related modes with different indices n0

shown on the right (including a single eigenmode with one line and a superposed mode with a set of lines). c, ωtrap evolves with
the tunability of d3 and d1, which represents the effect of Centrifugal force. The zero point of ωtrap is the Landau level point,
also the frequency-degenerate point (DP). d, Experimental Landau level control: the output frequency-degenerate modes of
DP at ∆d = 0 corresponding to patterns in the 3rd (HG-based) and 4th (LG-based) columns, around which the superposed
modes gradually evolve out of degeneracy by tuning d1 as the 1st, 5th, 7th columns (HG-based) [the 2nd, 6th, 8th columns
(LG-based)], corresponding to the 1st, 3rd and 4th red (purple) vertical lines on the horizontal axis. The patterns of the lower
(upper) line in the purple (red) frames represent the modes around En=0 (En=1) with index n0 = 0 (n0 = 1) corresponding to
the purple (red) vertical lines on the horizontal axis, achieved by the different off-axis of R1.

is ∆fn,m,l = (n− n0)fx + (m−m0)fy + (l− l0)fz where
fx = f0 + q∆f and fy = f0 − p∆f . ∆fx/∆fz and
∆fy/∆fz can be calculated based on the generalized
ABCD matrix theory (Supplementary material), corre-
sponding to the tunable d1 and d3. To illustrate the re-
lationship between the frequency spaces and (d1, d3), the
high-dimensional frequency spectrum is shown in Fig. 2
b1, where d1 ranges from 79.19 mm to 79.23 mm and

d3 ranges from 16 mm to 16.2 mm in our experimen-
tal setup (Supplementary material). To exhibit the fre-
quency lines clearly, the subspace degenerate spectra at
d1 = 16.10 mm and d1 = 16.15 mm are shown in Figs. 2
b2 and b3, corresponding to the orange and blue frames
in Figs. 2 b1. The superposed structured modes at the
d3 = 16.15 mm and d3 = 16.1 mm with some certain d1
(marked by arrows in Fig. 2 b2 and b3) are decomposed
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into several eigenmodes under the frequency-degeneracy
of (p, q) = (4, 0), (4,−1), and (4, 1), respectively. The
simulated results of the superposed structured modes
based on LG modes are shown in the right column as
examples. The zoom-in figures around the frequency de-
generacy with (p, q) = (4, 0) (the red and blue arrows)
are shown in Figs. 2 b4 and b5, respectively.

The high-dimensional photonic Landau levels. For the
generalized case that fx ̸= fy, their energy level could be
expressed as En0,m0,l0 = (n0 +

1
2 )fx + (m0 +

1
2 )fy + l0fz.

The energy level difference between two adjacent fre-
quency degenerate modes is ∆E = fx, fy, fz for a fixed
(m0, l0), (n0, l0), and (n0,m0), respectively, akin to the
Landau levels.

Experiment results. We assembled the cavity shown
in Fig. 1 e where the two intracavity cylindrical lenses are
set in the angle of α1 and α2, respectively. The distances
d1 (between the first cylindrical lens and R2) and d3 (be-
tween the second cylindrical lens and R1) are tunable
to achieve the frequency-degenerate superposed modes,
as shown in Fig. 3 a. The output modes from the cav-
ity are frequency-degenerate superposed HG modes (at
the position A in Fig. 3 a), which would be transformed
into frequency-degenerate superposed LG modes (at the
position B in Fig. 3 b) by the mode conversion (the ex-
tracavity cylindrical lenses). The off-axis displacement of
the first intracavity cylindrical lens would tune the index
range of superposed HG modes in x′-direction, while the
off-axis displacement of R2 would tune the index range
of superposed HG modes in y′-direction. The frequency-
degenerate superposed HG (LG) modes with the tunable
y′-direction index under different δd are shown in the
right column of Fig. 3 a, where the top and bottom raw
correspond to the simulation and experimental results,
respectively.

The frequency spectrum with the parameters of
this experimental cavity in Fig. 3 b shows the lines
corresponding to the HG eigenmodes with different
x′-direction indices intersect but those corresponding
to the HG eigenmodes with different y′-direction don’t
intersect, which means these sets of HG eigenmodes
are frequency-degenerate with x′-direction indices,
but not with y′-direction indices. Different sets of
HG eigenmodes superpose different HG (LG)-based
frequency-degenerate modes as the right inset of Fig. 3
b, which represent different Landau levels, and the
Landau level can be tunable with the off-axis of δd
in experiment. Moreover, with d3 = 16.1 mm and
d1 = 79.2 mm, the ωtrap representing the trapping
frequency related with the centrifugal force is zero (Sup-
plementary material), as shown in Fig. 3 c. Both Fig. 3 b
and c show the modes would be out of degeneracy when
the cavity parameters deviate from frequency-degenerate
position (DP), and the experimental results demonstrate

this as Fig. 3d. When d1 is tunable away from the DP,
the modes evolve into the quasi-degenerate modes as
HG (LG)-based modes in the third two columns and
the forth two columns, as well as HG (LG) eigenmodes
in the first two columns. The lower and upper rows
of experimental modes represent the lower and higher
Landau level states, as discussed in Fig. 3a and b.

DISCUSSION

Landau levels lay the most fundamental topological
orders for modern electronic and solid-state physics, es-
pecially, with profound implications for topological in-
sulators, photonic crystals, and optoelectronic materi-
als. While, the emerging research area of manipulating
photonic Landau levels is still in its infancy, which is a
concept that extends the Landau levels from electronic
systems to photonic systems, towards the unification of
fermionic, bosonic, and anyonic physics. Our work pro-
poses a highly flexible and simple setup to create and
manipulate photonic Landau levels of photons, unlocking
their practical applications. Therefore, our work not only
produces new kinds of structure light fields with unusual
topological features, but also opens up new possibilities
for studying quantum Hall effects, topological phase, and
quantum simulation in a new platform of bosonic sys-
tems.
Our linear degenerate cavity method to control pho-

tonic Landau levels, in contrast to the prior work, is more
stable and flexibly tunable. Due to the extended degrees
of freedom, we can precisely control photonic Landau lev-
els and solve the trade-off between trap stability and ge-
ometry modification. However, because of the spatial
limit of the linear cavity, it is challenging to simulate
large-scale Landau levels in our current setup. Fortu-
nately, recent advanced methods in higher-dimensional
structured light manipulation promised many extended
dimensions in order to access larger-range topological
orders [39–41]. For instance, the methods of intracav-
ity spatial light modulator (SLM) and coupled cavity
were used to simulate parity-time (PT) symmetry break-
ing [42, 43]. We believe combining intracavity SLMs and
degenerate laser could be an effective method to explore
advanced solid-state physics and more properties of large-
scale photonic crystals but in structured laser cavity, such
as PT symmetry, non-Hermitian, and chiral edge states.

METHODS

Frequency-degenerate mode laser source. Our
synthetic Landau level cavity is designed with two
mirrors and two cylindrical lenses, among which, two
cylindrical lenses are introduced to break the symmetry
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and achieve the output of 2D modes. To create a rotat-
ing system for the photons in the cavity, the generatrices
of the pair of intracavity cylindrical lenses are not
parallel. Specifically, the cavity is generated with cavity
mirrors R1 (Radius of curvature: R1) and R2 (Radius of
curvature: R2), the gain crystal Yb: CALGO, and a pair
of cylindrical lenses (Both focal lengths: f) with rotating
angulars α1 and α2. The distances between R2, the
first cylindrical lens, the second cylindrical lens and R1
are d1, d2 and d3, respectively. The synthetic magnetic
field can be tuned with the distance d1 between R2 and
the first cylindrical lens and the distance d3 between
the second cylindrical lens and R1 by moving the first
cylindrical lens and R1 along the axis, respectively. The
high-order HG eigenmodes can be generated with the
off-axis of the first cylindrical lens in cavity and R2.
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