
Holevo Cramér-Rao bound: How close can we get without entangling measurements?

Aritra Das,1, ∗ Lorcán O. Conlon,2 Jun Suzuki,3 Simon K. Yung,1, 2 Ping K. Lam,2, 1 and Syed M. Assad2, 1

1Centre for Quantum Computation and Communication Technology, Department of Quantum
Science and Technology, Australian National University, Canberra, ACT 2601, Australia

2A*STAR Quantum Innovation Centre (Q.InC), Institute of Materials Research and Engineering (IMRE),
Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, 08-03 Innovis 138634, Singapore

3Graduate School of Informatics and Engineering, The University of
Electro-Communications, 1-5-1 Chofugaoka, Chofu-shi, Tokyo 182-8585, Japan

(Dated: May 16, 2024)

In multi-parameter quantum metrology, the resource of entanglement can lead to an increase in
efficiency of the estimation process. Entanglement can be used in the state preparation stage, or
the measurement stage, or both, to harness this advantage—here we focus on the role of entangling
measurements. Specifically, entangling or collective measurements over multiple identical copies of
a probe state are known to be superior to measuring each probe individually, but the extent of
this improvement is an open problem. It is also known that such entangling measurements, though
resource-intensive, are required to attain the ultimate limits in multi-parameter quantum metrology
and quantum information processing tasks. In this work we investigate the maximum precision
improvement that collective quantum measurements can offer over individual measurements for es-
timating parameters of qudit states, calling this the ‘collective quantum enhancement’. We show
that, whereas the maximum enhancement can, in principle, be a factor of n for estimating n pa-
rameters, this bound is not tight for large n. Instead, our results prove an enhancement linear in
dimension of the qudit is possible using collective measurements and lead us to conjecture that this
is the maximum collective quantum enhancement in any local estimation scenario.

I. INTRODUCTION

Over half-a-century of advances in quantum metrol-
ogy [1–3] has vastly improved our ability to measure,
sense, image, and estimate with enhanced precision [4–9].
Of significant interest is the multi-parameter estimation
scenario [3, 10–13], where two hall-mark quantum effects
manifest themselves, playing opposing roles. On the one
hand, quantum incompatibility between the unknown pa-
rameters [14–17] hinders their simultaneous measurement
from a single copy of an unknown state [3, 18]. On the
other hand, given multiple identical copies of the state,
an entangling measurement on all the copies, called a
collective (or joint) measurement [19], can extract more
information about the parameters than any measurement
where the copies are measured individually 1 [20–22].
As individual and separable measurements can be re-
covered as special cases of collective measurements, it
is clear that the latter can only lead to precision en-
hancements in estimation tasks [22, 23], but the extent
of this improvement is a major open problem [21, 24].
In this work, we study the maximum enhancement col-
lective measurements stand to offer over individual mea-
surements, specifically in the context of parameter esti-
mation and state tomography.

Despite their advantages, collective measurements are
challenging to implement in any real estimation scenario

∗ Aritra.Das@anu.edu.au
1 This is in contrast to single-parameter estimation, where en-
tangled measurements over multiple copies of separable states
yield no advantage in terms of scaling of variance with number
of copies [1].

and experimental demonstrations are few and far be-
tween [22, 23, 25–27]. Resultantly, the ratio between
the optimal precisions attainable via collective versus
individual measurement serves as a useful quantifier of
both the quantum advantage offered by collective mea-
surements, and the utility of performing complicated en-
tangling measurements and expending vast amounts of
resources. If this ratio is small, then there is not much
advantage to be gained from entangling measurements.
But even if the ratio is large, our ability to perform the
requisite measurements might be limited, meaning that
the collective performance is just an overly optimistic
goal that is far from being achievable.

Collective measurements are known to not offer any
advantage for estimating a single parameter [1] or mul-
tiple parameters of a pure state [28]. Beyond this, ex-
cept for some simple cases, not much is known about
the optimal individual or collective measurement strate-
gies or their performance relative to each other. One
reason for this is that the analytic evaluation of the op-
timal performance of either class of measurements is no-
toriously difficult. In fact, instead of finding the opti-
mal measurements, it is easier (and more common) to
evaluate bounds on their precision. The most widely-
used precision bounds are quantum generalisations of the
classical Cramér-Rao bound (CRB) [14, 29–32]. These
include the quantum Fisher information (QFI)-based
CRBs [14, 29, 30], the Holevo CRB (HCRB) [31], the
Nagaoka-Hayashi CRB (NHCRB) [32, 33], and the Gill-
Massar CRB (GMCRB) [21]. Whereas the QFI-based
CRBs are generally not tight, the HCRB is attainable in
the asymptotic limit by performing collective measure-
ments on a large number of states [20, 34–36]. On the
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other hand, the NHCRB bounds the variance for individ-
ual measurements and, in many cases, can be proven to
be attainable.

Armed with these bounds, we study how far off the
collective-optimal precision can be from the individual-
optimal one by looking at their ratio. Specifically, by in-
vestigating the maximum ratio between the NHCRB and
the HCRB, we identify situations where collective quan-
tum measurements are the most advantageous. Our pre-
liminary results show that the ratio of precisions (defined
later) is smaller than the number of unknown parameters
being estimated, n. So we focus on state tomography,
where the number of parameters is maximal, n = nmax.
For the qubit tomography case, we extrapolate exist-
ing results to find a decreasing trend of the ratio with
purity [37]. Motivated by this, we propose a model of
estimating the coefficients of the generalised Gell-Mann
matrices (GMMs) [38], which extend the Pauli matri-
ces to higher dimensions, in mixed d-dimensional qu-
dit states [39]. This “linear GMM model” is symmetric
enough to admit analytical results in the full-parameter
case (n = nmax). We then extend these results via ar-
guments based on semi-definite programming (SDP) to
tomography in any other basis and to the n < nmax case.

A summary of our main findings on the ratio between
the collective- and individual-optimal precisions for local
estimation from smooth models on d-dimensional qudits
follows:

• for any model comprising n parameters, the ratio
is at most n (proved in Sec. III A),

• for tomography of the maximally-mixed state in
any basis, the ratio is at most d + 1 (proved to
be tight for GMM basis in Sec. IVA, and to be
valid for other bases in Appendix G),

• for tomography of any state in any basis, the ratio is
at most d+22 (proved for GMM basis in Sec. IVB,
numerically shown for other bases in Appendix G),

• for estimating any number of GMM basis coeffi-
cients of the maximally-mixed state, the ratio is at
most d+ 1 (proved in Sec. IVC),

• for tomography in the GMM basis, the maximum
ratio at fixed (known) purity is in O(d) and is at
most d+ 1 (numerical result in Sec. IVD),

• for any model comprising n parameters, the ratio
is at most min(n, d+ 1) (conjecture).

The rest of our paper is structured as follows. In Sec. II
we provide a brief background on parameter estimation
and precision bounds. Then in Sec. III we present some
preliminary results and introduce our main model. In

2 This bound is loose; we suspect the attainable bound to be d+1.

Sec. IV we present our methodology for obtaining the
maximum ratio for this model, treating the maximally-
mixed state in Subsec. IVA and arbitrary states in Sub-
sec. IVB, whilst deferring mathematical proofs to Ap-
pendices A–J. We solve a related model in Sec. IVC and
present further numerical results in Sec. IVD, before clos-
ing with a brief discussion in Sec. V.

II. BACKGROUND

In this section, we present a brief recap on quantum
parameter estimation, precision bounds and known rela-
tionships between them. We also introduce our model
of estimating generalised GMMs on parameterised qudit
states, along with a summary of results for the d = 2 case
of qubit Bloch vector estimation from Ref. [37]
The general recipe to estimate n parameters θ :=

{θj}j∈[n] ∈ Θ (where we define [n] := {1, . . . , n} and
denote by Θ the set of all possible parameter val-
ues) of a quantum state ρθ involves two steps. First,
one performs quantum measurements, generally positive
operator-valued measures (POVMs) {Πk}k∈[m] with m
outcomes, on ρθ. Second, a classical estimator opera-

tor θ̂jk is constructed that assigns an estimated value
to θj for each measurement outcome k ∈ [m], which oc-
curs with probability pk := Tr(ρθΠk). Here Tr (in serif
font) denotes tracing over the quantum system.
The performance of the estimator is quantified via its

mean squared error matrix

(Vθ)jk :=
∑
l∈[m]

(θ̂jl − θj)(θ̂kl − θk)pl , (1)

the trace of which gives the total average squared devi-

ation Tr(Vθ) =
∑

l,j(θ̂jl − θj)
2pl. Here Tr (in sans serif

font) denotes tracing over the classical or parameter in-
dices. In this work, we focus on local estimation, wherein
the parameters of interest are assumed to be close to their
true values, θ∗ := {θ∗j }j∈[n], i.e., θ ≈ θ∗. For locally-
unbiased (LUB) estimators, which have zero bias at the
true parameter values, Vθ is equivalent to the covariance
matrix of parameter estimates and Tr(Vθ) is simply the
total variance.
Precision bounds lower-bound the uncertainties in esti-

mating multiple (possibly) incompatible parameters. In
this work, we focus on precision bounds on Tr(Vθ); the
classical CRB yields a lower bound to this via

Vθ ≽ J−1 =⇒ Tr(Vθ) ≥ Tr(J−1) , (2)

where A ≽ B denotes positive semi-definiteness of A−B,
and J ≡ J(ρθ, {Πj}j∈[m]) is the classical Fisher in-
formation (CFI) tensor. The CFI (defined later in
Eq. (26)) is best understood as a measure on the pa-
rameter space Θ ⊆ Rn of the local sensitivity of mea-
surements {Πj}j∈[m] towards each θj when measuring

state ρθ. Minimising Tr(J−1) in Eq. (2) over all pos-
sible measurements {Πj}j∈[m] yields the so-called most
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informative CRB [33], representing the ultimate precision
attainable via individual measurements,

CMI := min
{Πj}j∈[m]

Tr(J−1) . (3)

A different precision bound on Tr(Vθ) for the separable-
measurement case, proposed by Nagaoka [33] and modi-
fied by Hayashi [16], is the NHCRB,

CNHCRB := min
L,X

{
Tr[SθL] | L ≽ XX⊤ ,

Ljk = Lkj Hermitian
}
− Tr

(
θθ⊤

)
.
(4)

Here X := {X1, . . . , Xn}⊤ are the Hermitian LUB esti-
mators that satisfy (abbreviating ∂

∂θj
as ∂j)

Tr(ρθXj) = θj & Tr(∂jρθXk) = δjk , (5)

and Sθ = 1n⊗ρθ, Tr denotes trace over both classical and
quantum subsystems, ⊤ denotes transpose with respect
to the classical (parameter) index, and blackboard fonts
represent classical-quantum matrices.

On the other hand, the HCRB is a collective-
measurement precision bound on Tr(Vθ), defined as

CHCRB :=min
X

{Tr (Zθ[X]) + ∥ImZθ[X]∥1} − Tr
(
θθ⊤

)
,

Zθ[X]jk :=Tr(ρθXjXk) , (6)

where ∥X∥1 := Tr
(√

X†X
)
denotes the trace norm. An

equivalent expression for CHCRB, written in a similar
form as Eq. (4), is

CHCRB :=min
L,X

{
Tr[SθL | Tr[SθL] real & symmetric ,

Tr[SθL] ≽ Tr
[
SθXX⊤]}− Tr

(
θθ⊤

)
. (7)

Notably, the minimisations in Eqs. (4), (6) and (7)
have no explicit closed-form solution for general mixed
states ρθ [40] and are typically evaluated numerically via
SDPs [19, 41].

Besides CHCRB ≤ CNHCRB, the following ordering be-
tween the various precision bounds is known

max (CSLD,CRLD) ≤ CHCRB ≤ CNHCRB ≤ CMI . (8)

Here CSLD and CRLD are, respectively, the symmetric
logarithmic derivative (SLD) and the right-logarithmic
derivative (RLD) CRBs (see Appendix D for defini-
tions). We know that all three inequalities in Eq. (8)
are saturated for single-parameter estimation [28]. More-
over, CNHCRB = CHCRB for estimating any number of pa-
rameters from pure states [28]. On the other hand, if the
single-copy NHCRB and the HCRB are unequal, this gap
persists between the finite-copy NHCRB and the HCRB,
shrinking asymptotically with the number of copies [42].
Lastly, the HCRB is known to be at most twice the SLD
CRB, i.e., CSLD ≤ CHCRB ≤ 2CSLD [43, 44].

Surprisingly, a similar relationship between the HCRB
and the NHCRB is not known, leading to a gap in our
knowledge of the potential quantum advantage offered
by collective measurements. Specifically, in this work,
we shall analyse the collective quantum enhancement

R [{ρθ| θ ∈ Θ}] := max
θ∈Θ

CNHCRB[ρθ]

CHCRB[ρθ]
, (9)

for a quantum statistical model {ρθ| θ ∈ Θ}, where the
maximum is over all possible parameter values. This
quantity can be interpreted as the maximum quantum
enhancement obtainable from using collective measure-
ments over separable measurements for this model. A
further maximisation over all full-rank quantum models
is possible,

R := max
full-rank models

R [{ρθ| θ ∈ Θ}] , (10)

corresponding to the ultimate collective quantum en-
hancement in precision [3, 45]. In the following we ab-
breviate R [{ρθ| θ ∈ Θ}] as R[{ρθ}] while specifying the
model explicitly. We are also interested in the case where
the maximisation over full-rank models is restricted to ei-
ther d-dimensional probe states, or estimating n param-
eters, or both, with d and n fixed and known.

III. PRELIMINARIES

In this section, we establish some preliminary results
based on recent work and introduce our model. First, in
Subsec. III A we establish a problem-independent upper
bound of n on the ultimate collective enhancement R.
Then, in Subsec. III B, we introduce our model, the linear
GMM model, and identify one of its unique features.

A. Ratio of n

We now establish a model-agnostic (or problem-
independent) upper bound of n on the ultimate collec-
tive enhancement R, for estimating n parameters. Us-
ing Ref. [46]’s upper bound (based on Ref. [47]) to the
NHCRB,

CNHCRB ≤ min
X

{
Tr(Zθ[X])

+
∑

j,k∈[n]

∥ρθ[Xj , Xk]∥1

}
,

(11)

and ∥[ρθ[Xj , Xk]∥1 ≤ 1/2Tr
[
ρθ(X

2
j +X2

k)
]
, we get

CNHCRB ≤ nmin
X

Tr (Zθ[X]) = nCSLD . (12)

On the other hand, from Eq. (6), we have CHCRB ≥
minX Tr(Zθ[X]) so that CNHCRB/CHCRB ≤ n and thus

R ≤ n . (13)
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Note that under the assumption of independent param-
eters θ, we have n ≤ nmax [21], so that Eq. (13) im-
plies R ≤ nmax = d2 − 1.

B. Model: Estimating GMMs from Qudits

We now introduce our quantum statistical model,
which is an nmax-parameter family of d-dimensional
qudit states. This model, which we call the ‘lin-
ear GMM model’, involves estimating the nmax coeffi-
cients {θj}j∈[nmax] of the GMMs Λd := {λj}j∈[nmax] from
the Bloch representation of a qudit state [39],

ρθ = 1d/d+

nmax∑
j=1

θjλj . (14)

The GMMs Λd are traceless, Hermitian generalisations
of the qubit Pauli operators (see Appendix A), and
the decomposition in Eq. (14) is a one-to-one map be-
tween the Hilbert space Hd of ρθ and the parameter
space Θ ⊂ Rnmax . Estimating θ is thus equivalent to qu-
dit state tomography. Note that we adopt the convention
of normalising the GMMs such that Tr(λjλk) = δjk

3.
It is useful to summarise the d = 2 case results

here [37]; the HCRB and NHCRB are

CHCRB = CRLD = = 3− r2 + 2r ,

CNHCRB = CGMCRB = 5− r2 + 4
√

1− r2
(15)

with r2 =
∑

j θ
2
j = Tr

(
ρ2
)
− 1/2 the squared length of

the Bloch vector. In this case, the NHCRB is attained
by measuring informationally-complete (IC) POVMs,
simplifying to symmetric informationally-complete (SIC)
POVMs (see Eq. (25) for definition) at r = 0 [37]. It
is straightforward4 to see from Eq. (15) that the ra-
tio CNHCRB/CHCRB is maximised at r = 0, correspond-
ing to estimating parameters of the maximally-mixed
state. Thus, for the qubit tomography model, the max-
imum enhancement R[{ρθ}] is three, and this ratio is
attained when estimating the three Pauli matrix coeffi-
cients of the maximally-mixed qubit state [37].

An important simplifying feature of the linear GMM
model is that the LUB estimators X = {X1, . . . , Xn}⊤
are uniquely fixed to be the GMMs themselves, i.e.,

Xj = λj . (16)

That there is exactly one feasible solution for the LUB
estimators5 significantly simplifies the evaluation of the

3 Some authors [48] instead normalise as Tr(λjλk) = 2δjk to be
consistent with the d = 2 case for Pauli matrices. Our convention
rescales the parameter values and bounds, but leaves their ratios
invariant.

4 CHCRB increases with r whereas CNHCRB decreases.
5 This is not generally true, e.g., in Refs. [19, 23] and Appendix F,
where Xj =

∑
k cjkλk for j ∈ [n] and unknown cjk ∈ R.

bounds. To see this unique feature of our model, consider
that the true (unknown) state is

ρ∗θ = 1d/d+

nmax∑
j=1

θ∗jλj .

The LUB constraints (Eq. (5)) at θ∗ are then

Tr(ρθXk)
∣∣
θ=θ∗ = θ∗k and Tr(∂jρθXk)

∣∣
θ=θ∗ = δjk. (17)

Writing Xj =
∑

k cjkλk, where cjk are unknown real
numbers (to preserve Hermicity of Xj), reduces Eq. (17)
to ∑

j

ckjθ
∗
j = θ∗k & ckj = δjk,

which immediately implies Xj = λj , as claimed.

IV. METHODS & RESULTS

In this section, we present our methodology for char-
acterising the maximum collective enhancement for the
linear GMM model. First, we study the tomography of
maximally-mixed qudit states in Subsec. IVA and show
the enhancement here is exactly d + 1. Next, in Sub-
sec. IVB, we extend our arguments to arbitrary qudit
states, establishing a maximum collective enhancement
of d+2. In Subsec. IVC, we explore the related model of
estimating fewer than nmax parameters of the maximally-
mixed state and show that the maximum enhancement
remains d + 1. Finally, in Subsec. IVD, we present nu-
merical results for the maximum enhancement at fixed
probe purity, which we find to be in O(d), and for the
maximum enhancement for arbitrary parameterisations
of arbitrary qudit states.

A. Ratio of d+ 1: Maximally-mixed State

We now investigate the parameter estimation of θ
(n = nmax) for the maximally-mixed qudit state ρ∗θ =
1d/d =: ρm in d dimensions (corresponding to θ∗ = 0).
For ρm, we calculate the SLD and RLD CRBs, the
HCRB, the NHCRB, and the GMCRB. We also find the
SIC-POVM in d dimensions to be an optimal individual
measurement that attains the NHCRB, thus establish-
ing CMI = CNHCRB for this case [33]. Choosing ρ∗θ = ρm
simplifies the evaluation of various CRBs as this choice
of ρ∗θ commutes with every linear operator.

From their definitions, (see Eqs. (D2) and (D3) in Ap-
pendix D), we find both the SLD and the RLD operators
to be simply

LSLD
j = LRLD

j = d λj . (18)
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The two resulting QFI matrices are equal and diagonal
(see Appendix D),

J (SLD) = J (RLD) =


d 0 . . . 0

0 d . . .
...

...
...

. . . 0
0 . . . 0 d


n×n

, (19)

which is a sign that our model is “locally classical” [13,
49]. The two QFIs then yield their respective CRBs,

CSLD = CRLD =
nmax

d
=

d2 − 1

d
. (20)

As expected of a locally classical model, the HCRB
coincides with the SLD CRB and RLD CRB [13, 49].
In fact, any full parameter model (n = nmax) with
linearly-independent parameter derivatives constitutes a
“D-invariant” model, for which CHCRB = CRLD is known
to hold [31, 49]. Nonetheless, and more directly, note that
the minimisation over X in the definition in Eq. (6) is re-
dundant due to the uniqueness discussed in Sec. III B.
Thus, (Zθ[X])jk = 1

d Tr(λjλk) = δjk/d, which is ex-

actly J (SLD)−1
. Correspondingly,

CHCRB = Tr(Zθ[X]) = Tr(J (SLD)−1
) =

d2 − 1

d
= CSLD .

We write this result as Lemma 1, and defer the de-
tailed proof to Appendix C. Note that, more generally,
CSLD = minX{Tr (Zθ[X])}, so that when X is uniquely
fixed, CHCRB ≥ CSLD implies

CHCRB ≥ Tr (Zθ[X]) = Tr
(
SθXX⊤) . (21)

Lemma 1. The HCRB for estimating θ ≈ 0 from ρm is

CHCRB =
d2 − 1

d
. (22)

The NHCRB is not as trivial to compute because de-
spite X being uniquely fixed, there is still a minimi-
sation over nd × nd matrix L in Eq. (4) [19]. More-
over, directly proving the optimality of a candidate L is
difficult—for this purpose we turn to the SDP formula-
tion of the NHCRB [19] (see Appendix E for definition).
The SDP approach offers a simple way to prove optimal-
ity via duality: if we can find a primal-feasible solution
and a dual-feasible solution such that the primal objec-
tive value equals the dual objective value, then the so-
lutions are optimal. In Appendix E, we present a pair
of such solutions and prove their optimality using this
approach. The optimal argument L∗ we find to the SDP
is

L∗
jk =

(
d+ 1

d+ 2

)(
{λj , λk}+ δjk1d

)
(23)

where j, k ∈ [n] and { , } denotes the anti-commutator.
Directly computing Tr[SθL∗] then leads to the following
lemma.

Lemma 2. The NHCRB for estimating θj ≈ 0 from ρm
is

CNHCRB =
(d2 − 1)(d+ 1)

d
. (24)

Our first main result now follows straightforwardly
from Lemmas 1 and 2.

Theorem 1. For tomography of the maximally-mixed
qudit state ρm = 1d/d, the collective enhance-
ment CNHCRB/CHCRB = d+ 1.

The HCRB is already known to be asymptotically at-
tainable, so we now prove the attainability or tightness
of the NHCRB for our model. Specifically, we show that
the NHCRB in Lemma 2 can be attained by measuring
any rank-one symmetric informationally-complete (SIC)
POVM in d dimensions (assuming one exists). The SIC
POVM is a set of d2 measurement operators {Πj}j∈[d2]

that form a POVM and are completely symmetric be-
tween themselves under the trace inner product,

Tr (ΠjΠk) =
1

d2(d+ 1)
∀ j ̸= k. (25)

To prove that measuring SIC POVMs attains
the NHCRB, we show that the measured probabili-
ties Tr(ρmΠj) directly yield a variance equal to CNHCRB

from Lemma 2, establishing CMI = CNHCRB in this case.
The CFI matrix Jjk (j, k ∈ [n]), which in the multi-
parameter case is given by

Jjk
[
{Πl}l∈[m]

]
=

m∑
l=1

Tr [∂jρθΠl] Tr [∂kρθΠl]

Tr [ρθΠl]
, (26)

simplifies to (see Lemma 7 and proof in Appendix E 5)

Jjk = d2
d2∑

m=1

Tr[λjΠm] Tr[λkΠm] = δjk
d

d+ 1
(27)

in this case, so that Eq. (2) then leads to

Tr(J−1) =
(d2 − 1)(d+ 1)

d
= CNHCRB . (28)

From Eq. (3), we then have CMI ≤ Tr(J−1) = CNHCRB ≤
CMI with the last inequality from Eq. (8). This
proves CMI = CNHCRB, meaning that the ultimate indi-
vidual precision is attained for this model by measuring
SIC POVMs. Notably, any rank-one SIC POVM in d
dimensions, irrespective of its orientation, constitutes an
optimal individual measurement in this scenario. An al-
ternative proof of this attainability can be furnished us-
ing the Gill-Massar Cramér-Rao bound (GMCRB) [21],
which also applies to the individual measurement setting
(see Appendix H).
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B. Ratio of d+ 2: Extension to Arbitrary States

In this section, we extend Lemmas 1 & 2 and Theo-
rem 1 for ρm to arbitrary qudit states ρθ ̸= ρm. Such a
qudit state can still be written as in Eq. (14), but now the
true parameter values θ∗ are non-zero and θ ≈ θ∗. In this
case, we show that CHCRB[ρθ] ≥ CHCRB[ρm]−

∑
j∈[n] θ

∗
j
2

and that CNHCRB[ρθ] ≤ CNHCRB[ρm]−
∑

j∈[n] θ
∗
j
2, which,

we then show, imply

CNHCRB[ρθ]

CHCRB[ρθ]
≤ d+ 2 .

This establishes the maximum collective quantum en-
hancementR[{ρθ}] for the linear GMMmodel to be d+2.
We also argue that the optimal individual measurements
are now IC POVMs, supported by numerical results in
Appendix I.

The HCRB and the NHCRB involve an addi-
tional −Tr(θ∗θ∗⊤) = −

∑
j∈[n] θ

∗
j
2 term for non-zero θ∗

(Eqs. (4), (6) & (7)). For the HCRB, it is simple to
see from Eq. C6 in Appendix C that Tr(SθXX⊤) still
lower-bounds minL,X Tr(SθL) (see also Remark 1 in Ap-
pendix C) so that

CHCRB[ρθ] ≥ Tr(SθXX⊤) −
∑
j∈[n]

θ∗j
2 (29)

despite L = XX⊤ not being the optimal solution any-
more. Note also that the purity of the true state ρ∗θ is

P(ρ∗θ) = Tr
(
(ρ∗θ)

2
)
= 1/d+

∑
j∈[n]

θ∗j
2.

By explicit calculation, we find Tr(SθXX⊤) = d2−1/d =
CHCRB[ρm], and hence,

CHCRB[ρθ] ≥
d2 − 1

d
−
∑
j∈[n]

θ∗j
2 = d− P(ρ∗θ) . (30)

From Lemma 1, we know that this inequality is saturated
by the maximally-mixed state ρm, which has purity 1/d.
Fig. 1 (a) depicts how d−P(ρ∗θ) compares with the actual
HCRB for qutrit states.

For the NHCRB, our key insight is that the optimal ar-
gument L∗

jk = d+1/d+2 ({λj , λk}+ δjk1d) from Lemma 3
in Sec. IVA is still feasible: L∗ satisfies the constraints
Ljk = Lkj Hermitian and L ≽ XX⊤, which are all inde-
pendent of ρθ. However, L∗ is not optimal so Tr[SθL∗]
only upper-bounds minL Tr[SθL] in Eq. (4). Again, we
explicitly calculate Tr[SθL∗] to find

Tr[SθL∗] =
(d2 − 1)(d+ 1)

d
= CNHCRB[ρm]

so that we can upper-bound the NHCRB as

CNHCRB[ρθ] ≤
(d2 − 1)(d+ 1)

d
−
∑
j

θ∗j
2

= d2 + d− 1− P(ρθ∗) .

(31)

From Lemma 2, we see that the inequality in Eq. (31) is
saturated by the maximally-mixed state ρm. Fig. 1 (b)
depicts how d2 + d− 1−P(ρ∗θ) compares with the actual
NHCRB for qutrit states.

Theorem 2. For tomography on arbitrary d-dimensional
qudit state ρθ, the maximum collective enhance-
ment R[{ρθ}] = maxθ∈Θ CNHCRB[ρθ]/CHCRB[ρθ] ≤ d+2.

Proof. Combining the lower bound for the HCRB in
Eq. (30) with the upper bound for the NHCRB in
Eq. (31), we get

CNHCRB[ρθ]

CHCRB[ρθ]
≤ d2 + d− 1− P(ρθ)

d− P(ρθ)
. (32)

Then, using 1/d ≤ P(ρθ) ≤ 1, we find the maximum
of the right hand side of Eq. (32) to be d + 2, attained
when P(ρθ) = 1, i.e., when ρθ is pure.

Theorem 2 establishes a loose upper bound that we
expect to never be attained. The ratio between the two
bounds is actually maximised by maximally-mixed states
and minimised by pure states. This discrepancy is due
to the HCRB lower bound in Eq. (29) being a decreasing
function of purity, whereas numerical results (Sec. IVD
and Appendix G) and the qubit case (Eq. (15)) show
the HCRB to be an increasing function of purity for this
model. And using CHCRB[ρθ] ≥ CHCRB[ρm] instead of
Eq. (29) in the proof of Theorem 2 leads to an upper
bound of d+ 1 on the ratio; this is a tight bound and is
saturated by the model considered in Sec. IVA. Nonethe-
less, Theorems 1 and 2 together establish that for the
linear GMM model, R[{ρθ}] ≤ d+ 2.
We extend the upper bounds on the ratio proved in

Secs. IVA and IVB to arbitrary, full-rank, parameter-
independent weight matrices W in Appendix G. Ar-
bitrary weight matrices correspond to reparameterisa-
tions of the model [13, 19, 50], i.e., estimating param-
eters that are not coefficients of the GMMs. Our re-
sults in Appendix G prove that for the maximally-mixed
state ρm, and for estimating any nmax independent pa-
rameters locally, the maximum collective enhancement
is at most d + 1. We also numerically show that when
estimating from any other state ρθ, the ratio is smaller
than when estimating from ρm with the same weight W .
This suggests the maximum quantum enhancement from
collective measurements over individual measurements in
any local tomography problem is d+ 1, i.e.,

max
full-rank,

full-parameter
models

R [{ρθ}] ≤ d+ 1 , (33)

and this upper bound is attained by the model studied
in Sec. IVA.
Finally, the optimal separable measurements, assum-

ing all the θj to be independent, are IC-POVMs. This is
because to estimate d2 − 1 independent parameters, one
needs d2 − 1 independent probabilities which can only
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FIG. 1. Comparison of the HCRB and the NHCRB to their lower and upper bounds, respectively. (a) HCRB and its lower
bound d − P(ρθ) (from Eq. (30)). The lower solid parabolic curves show the lower bound and the upper triangular curves
(beginning and ending with dots) show the numerically-computed HCRB. (b) NHCRB and its upper bound d2 + d− 1−P(ρθ)
(from Eq. (31)). The lower dotted curves show the numerically-computed NHCRB and the upper solid curves show the upper
bound. The state chosen in both (a) and (b) is a mixed qutrit ρθ = 1d/d+ θ1λ2 + θ2λ4.

arise from measuring a POVM with at least d2 linearly
independent elements. Having any more than d2 POVM
elements is also redundant, as the extra elements cannot
be linearly independent from the first d2 elements. In
Appendix I, we depict the transition from SIC POVMs
to IC POVMs as the purity of ρθ increases from 1/d for
the maximally-mixed state to 1 for pure states. This re-
sult is in line with previous findings that IC POVMs are
optimal for state estimation and tomography [51, 52].

C. Related Model: Estimating n < nmax GMMs

In Secs. IVA and IVB, we studied the full-parameter
linear GMM model for the cases θ∗ = 0 and θ∗ ̸= 0. In
this section, we study the GMM model with n < nmax

parameters, with the remaining nmax −n parameters set
to zero, i.e., estimating {θj}j∈[n] ∈ Θ from

ρθ = 1d/d+
∑
j∈[n]

θjλj . (34)

The case with {θj}j∈[nmax]\[n] ̸= 0 is also interesting but
we do not study that here. Moreover, we only provide an-
alytic results for the true state ρ∗θ = ρm. This is because,
numerically, we see that when the parameters not esti-
mated are set to zero, the ratio is maximised by ρm. Al-
though we have not specified which nGMMs we choose to
estimate, and despite the NHCRB (but not the HCRB)
depending on this choice,6 the bounds we provide on the
ratio are independent of this choice.

The differentiating factor for this model is that Xj =
λj are not the sole possible LUB estimators. Nonethe-
less, for the HCRB, this choice is still optimal, and the
HCRB is n/d, the same form as Lemma 1. For the

6 See Table I in Appendix F

NHCRB, we find that linearly modifying Λd and bilin-
early modifying L∗

jk from Lemma 3 gives us an upper

bound of (d+ 1)n/d, also the same form as Lemma 2.
For the HCRB, we again resort to the inequality

(Eq. (21)) CHCRB ≥ Tr[SθXX⊤], but with the extra
observation that for estimating from ρm, Tr[SθXX⊤] is
minimised when Xj = λj (see Appendix F). Moreover,
for Xj = λj , L = XX⊤ satisfies all the constraints and
yields

Tr[SθL] = Tr[SθXX⊤] =
n

d
,

so that CHCRB = CSLD = n/d, as claimed.
For the NHCRB, the Xj are linear combinations of

the d2 − 1 GMMs, and, so, can be written as

X = C(2)Λd , (35)

where C(2) is a real matrix. Then, XX⊤ =

C(2)ΛΛ⊤C(2)⊤. We similarly modify L∗ from Eq. (23)

to define L∗∗ := C(2)L∗C(2)⊤, which ensures L∗∗ ≽ XX⊤

because of L∗ ≽ ΛΛ⊤ from Lemma 3 in Appendix E. The
NHCRB in Eq. (4) then becomes a minimisation over L
and C(2). However, if we choose our ansatz L∗∗ for L and
minimise only over C(2), we should get a larger value, i.e.,

CNHCRB = min
L,C(2)

{
Tr[SθL] | Ljk = Lkj Hermitian ,

L ≽ C(2) ΛΛ⊤C(2)⊤
}

≤ min
C(2)

{
Tr[SθL∗∗] | L∗∗ = C(2) ΛΛ⊤C(2)⊤

}
=

(d+ 1)n

d
.

(36)

The inequality in Eq. (36) holds because the second min-
imisation is performed over a subset of the set over which
the first minimisation is performed and the last equality
follows after some algebra (see Appendix F). Combining
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this upper bound on the NHCRB with CHCRB = n/d, we
get the following theorem.

Theorem 3. For estimating fewer-than-nmax coeffi-
cients of GMMs of the maximally-mixed qudit state, the
collective enhancement CNHCRB/CHCRB ≤ d+ 1.

Numerically, we see this ratio actually depends on n:
as n increases from 2 to d2−1, the ratio increases from 2
to d+ 1. Table I in Appendix F depicts this increase by
listing the two bounds and their ratios for d = 3. As
proven here, the HCRB only depends on n and d. Inter-
estingly, when the true values of the parameters not being
estimated are non-zero, the maximally-mixed state is no
longer the ratio-maximising state. However, the n bound
in Sec. III A and numerical results in Sec. IVD suggest
that the maximum ratio increases with n at fixed d. And
we have analysed the n = nmax case in depth, so we
expect that for any n < nmax model, the same bound
of d+ 1 should hold.

D. Numerical Results

Our results from numerical simulations both validate
and complement our analytical results. Fig. 1 (a) and
(b) show our numerical results for d = 3 and ρθ close
to ρm, i.e., highly mixed qutrit states. It is evident that
the lower and upper bounds from Eqs. (30) and (31), re-
spectively, are valid for all ρθ but saturated only for ρm.
In fact, in Fig. 1 (a), our HCRB lower bound is a decreas-
ing function of purity whereas the HCRB is an increas-
ing function of purity. It then follows that CHCRB[ρθ] ≥
CHCRB[ρm] must hold true, which would imply a maxi-
mum collective enhancement of d+ 1 instead of d+ 2 in
Theorem 2.

Directly maximising the ratio CNHCRB/CHCRB over
state space Hd is computationally demanding for large d,
so we perform repeated-random sampling over Hd to
study the dependence between maximum ratio and state
properties. For each randomly-generated problem in-
stance, we solve the NHCRB and HCRB SDPs numeri-
cally and compute their ratio [19]. Further details of the
random-sampling procedure used for subsequent results
are presented in Appendix J.

In Fig. 2, we plot our random-sampling results for the
ratio versus purity in the linear GMM model for d = 2, 3
and 4. For each d, the overall maximum ratio observed
is d + 1. Interestingly, whereas for qubits the ratio is
uniquely determined by purity, the higher dimensionality
of the qudit state space allows for a range of ratios at any
given purity. We find that the ratio at a given purity is
maximised by full-rank depolarised pure states, p |ϕ⟩⟨ϕ|+
(1 − p)1d/d for any pure state |ϕ⟩ and p ∈ [0, 1]. To
simplify computation, we choose the more specific family
ρmax(p) = p |+⟩⟨+|d + (1 − p)1d/d, where |+⟩d = (|0⟩ +
· · ·+ |d− 1⟩)/

√
d and calculate the HCRB to be

CHCRB[ρmax(p)] =
d2 − 1

d
+ p(d− 1)− d− 1

d
p2 . (37)

For the NHCRB, based on numerical evidence for d = 3
to 8, the analytic solutions at the boundary cases ((d2 −
1)(d + 1)/d at p = 0 and 2(d − 1) at p = 1), and the
analytic solution for d = 2 (Eq. (15)), we find that

CNHCRB[ρmax(p)] =
d2 + 1

2
− d2 − 4d+ 5

2
p2

+
d3 + 2d2 − 3d− 2

2d

√
1− p2 .

(38)

Accordingly, the maximum collective enhancement at a
fixed purity P∗ is CNHCRB[ρmax(p

∗)]/CHCRB[ρmax(p
∗)]

with p∗ =
√

P∗d−1
d−1 . Eqs. (37) and (38) reveal that

the HCRB grows at most linearly with d, whereas the
NHCRB grows at most quadratically, so that the max-
imum enhancement at fixed purity (dark red line in
Fig. 2) grows at most linearly with dimension and is at
most d+ 1.
In contrast to the maximum ratio, the minimum-ratio

states (blue dots in Fig. 2) are rank-deficient states7 of

the form ρ
(2)
min(p) = p |0⟩⟨0|+(1−p) |1⟩⟨1| for purity greater

than 1/2, ρ
(3)
min(p) = p |0⟩⟨0|+ p |1⟩⟨1|+ (1− 2p) |2⟩⟨2| for

purity between 1/3 and 1/2, and so on8 down to ρ
(d)
min for

purity between 1/d and 1/(d − 1). This change in form
of the minimum-ratio state reflects as the points of non-
differentiability in the minimum-ratio curve in Fig. 2.
Whereas all our analytical results are for the linear

GMM model, we now provide numerical results for arbi-
trary smooth models of full-rank qudit states. Specif-
ically, we estimate n arbitrary independent parame-
ters from arbitrary full-rank d-dimensional qudit states.
In this case, the parameter derivatives ∂jρθ are arbi-
trary traceless Hermitian operators. Our results for this
model are shown in Fig. 3 (and Fig. 9 in Appendix J).
Fig. 3 clearly depicts the increase in maximum ratio with
number of parameters, in agreement with Secs. III A
and IVC. On the other hand, the maximum ratio for
a given number of parameters seems to decrease with in-
creasing dimension, but the trend is not perfect due to
the relatively small number of samples (104) for higher
dimensions.

V. DISCUSSION & CONCLUSION

In this work, we established that for estimating
any n independent parameters, the maximum precision-
enhancement from collective measurements can, in prin-
ciple, be n. However, at the maximum value of n,
we proved this maximum enhancement to be only O(d)

7 Although we have treated only full-rank states until now, rank-
deficient states can be approximated arbitrarily well by full-rank
ones [39].

8 We only provide analytic expressions for ρ
(2)
min and ρ

(3)
min.
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FIG. 3. Random-sampling maximum (10, 000 samples each)
of ratio for dimensions d from three to eight and number of
parameters n from two to eight. See Fig. 9 in Appendix J for
the distribution of ratios for each d and n.

or O(
√
nmax). Specifically, for the model of qudit to-

mography in the Gell-Mann basis, we proved the max-
imum collective quantum enhancement to be d + 2, re-
vealing the SIC POVM to be an individual-optimal mea-
surement for the maximally-mixed case. Based on the
specific examples provided and our numerical results, we
expect the attainable maximum enhancement to be d+1
instead. We also established a maximum enhancement
of d + 1 for tomography in any other basis, i.e., for es-
timating any other d2 − 1 parameters. Even when es-
timating fewer than this maximum number of param-
eters from the maximally-mixed state, we showed that
the upper bound of d + 1 holds. Finally, we numeri-
cally demonstrated a maximum enhancement in O(d) for
states of a fixed known purity. Our work thus supple-

ments the known ratio result CSLD ≤ CHCRB ≤ 2CSLD

with CSLD ≤ CHCRB ≤ CNHCRB ≤ (d + 1)CHCRB.
Throughout, we have demonstrated our analytical find-
ings via numerics and figures for specific d.

Our choice of the Gell-Mann basis for tomography was
motivated by its symmetry and simplicity, apart from be-
ing a generalisation of Pauli matrices. The orthonormal-
ity of this basis leads to (local) parameter orthogonality
of the basis coefficients [53] for estimating the maximally-
mixed state, meaning the Fisher information matrices
(both QFIM and CFIM) are diagonal. In this case, the
SLD and RLD CRBs equal the HCRB, which are signa-
tures of a D-invariant and locally-classical model [13, 49].

However, the significance of considering the Gell-Mann
basis cannot be overstated. Generally, any parameter es-
timation problem may be linearised about the true pa-
rameter values as ρθ ≈ ρθ∗ +

∑
(θj − θ∗j )∂jρ

∗
θ, with the

partial derivatives ∂jρθ necessarily traceless and Hermi-
tian, meaning they are combinations of GMMs (Sec. VC
in [21]). This estimation problem can then be lin-
early transformed to the equivalent problem of estimat-
ing some number of GMM coefficients [13], precisely the
model solved in Sec. IVC. For example, the simple re-
sult of CHCRB[ρm] = n/d from Sec. IVA can be directly
linearly transformed to obtain a closed-form expression
for the HCRB for estimating any d2 − 1 independent pa-
rameters from any full-rank qudit state. Lastly, though
our analysis of bounds was specific to tomography in the
GMM basis, numerical checks suggest that the bounds
and their ratio are invariant for tomography in any other
orthonormal basis for the same (traceless and Hermitian)
space.

Our approach in this work was to study the quan-
tity R by operating at the extreme value of n for fixed d,
which is d2 − 1. A complementary result on the impact
of dimensionality on precision and incompatibility in the
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multi-parameter setting was recently reported [54]. By
defining the normalised gap ∆ = (CHCRB −CSLD)/CSLD

(0 ≤ ∆ ≤ 1), the authors studied the asymptotic in-
compatibility in estimating n = 2 and 3 parameters en-
coded unitarily onto d-dimensional qudits. Their results
indicate that at fixed n, increasing d leads to decreasing
asymptotic incompatibility, and that for d > n, the in-
compatibility can vanish altogether [54]. A similar effect
is seen in our Fig. 3, where, at fixed n, increasing d leads
to the maximum ratio decreasing. In fact, we can define a
finite incompatibility δ = (CNHCRB −CHCRB)/CHCRB ≤
R − 1 based on our results; we have then shown that δ
can be as large as d, a significant difference from the
asymptotic case.

The results in Fig. 3 and Sec. III A indicate the max-
imum collective enhancement increases with number of
parameters, and hence is highest for state tomogra-
phy. Moreover, for tomography, the maximum enhance-
ment decreases with purity (Fig. 2) and is maximised
by minimum-purity states. Based on this, we conjec-
ture that maximum ratio R is attained for tomography
of the maximally-mixed state. This case was studied an-
alytically to find a ratio of d + 1. Hence, we conjecture
that CNHCRB ≤ (d + 1)CHCRB for all smooth full-rank
models in the local estimation setting, i.e.,R = d+1. No-
tably, both the n bound (Sec. III A) and the d+1 bound
(Sec. IV) can be tight, with the qubit case (Eq. (15))
being an example of the former. Resultantly, if our con-
jecture holds true, we would have the stronger condi-
tion R = min(n, d+ 1).

In conclusion, we find that for local estimation prob-
lems involving n parameters, the optimal collective mea-
surements are at most n times more precise than the op-
timal individual measurements. Although this suggests
a collective quantum enhancement of n is possible, and

that the utility of collective measurements scales with the
number of estimated parameters, our further analysis in-
dicates otherwise. By taking the probe dimension d into
account, we upper-bound the collective enhancement by
d+ 1, which is a tighter bound for large n (n > d). Our
investigation into the utility of collective measurements
thus reveals a diminishing payoff in the asymptotic limit.
Whereas collective measurements on two copies, three
copies, and so on, are practically feasible and outper-
form the optimal individual measurements, the optimal
collective measurements that saturate the HCRB require
entangling measurements on asymptotically-large num-
ber of copies but only enhance precision by a factor at
most linear in dimension, underscoring their non-utility.
Our results apply to multi-parameter quantum metrol-

ogy and quantum sensing, where a judicious choice be-
tween measurement strategies would be resource-wise
beneficial. Conversely, our work questions the choice of
the HCRB when benchmarking the performance of real-
world quantum measurements, and suggests the (finite-
copy) NHCRB as a more suitable alternative. Investigat-
ing the advantage offered by finite-copy collective mea-
surements, or extending to Bayesian settings could offer
valuable insights into the potential of entangling mea-
surements.
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Appendix A: Gell-Mann Matrices and Tomography
via Parameter Estimation

The main advantage of the Bloch representation for
qubits,

ρ =
1

2

12 +
∑

j∈{x,y,z}

θjσj

 , (A1)

where P := {σx, σy, σz} is the Pauli basis, is the con-
venience of working with the real-valued Bloch vec-
tor θ := {θx, θy, θz} ∈ R3 instead of the equivalent com-
plex operator ρ ∈ C2×2. The same convenience is availed
in three dimensions by replacing P with the GMMs,
Λ3 := {λj}8j=1. These constitute an orthonormal basis
over the reals for the space of 3 × 3 traceless Hermitian
matrices and generalise the Pauli matrices to three di-
mensions. So for a qutrit state ρ, we can write

ρ = 13/3 +

8∑
j=1

θjλj (A2)

with

λ1 =
1√
2

0 1 0
1 0 0
0 0 0

 , λ2 =
1√
2

0 −i 0
i 0 0
0 0 0

 ,

λ3 =
1√
2

1 0 0
0 −1 0
0 0 0

 , λ4 =
1√
2

0 0 1
0 0 0
1 0 0

 ,

λ5 =
1√
2

0 0 −i
0 0 0
i 0 0

 , λ6 =
1√
2

0 0 0
0 0 1
0 1 0

 ,

λ7 =
1√
2

0 0 0
0 0 −i
0 i 0

 , λ8 =
1√
6

1 0 0
0 1 0
0 0 −2

 .

(A3)

Note that we choose a different convention in Eq. (A2)
from that in Eq. (A1), and we set Tr(λjλk) = δjk instead
of the standard 2δjk in Eq. (A3) for convenience.

The eight GMMs in Eq. (A3) for d = 3 can be ex-
tended to d > 3 leading to the generalised GMMs Λd

(that we shall also refer to as GMMs). In fact, Λd consists

of
(
d
2

)
real, symmetric matrices that generalise σx,

(
d
2

)
imaginary, skew-symmetric matrices that generalise σy,
and d − 1 real, diagonal matrices that generalise σz. In

total, we have d2 − 1 matrices, {λj}d
2−1

j=1 , in Λd, and, for
arbitrary qudit density matrix ρ in d dimensions, we can
write

ρ = 1d/d+

d2−1∑
j=1

θjλj (A4)

to get a one-to-one map between ρ ↔ θ. Resultantly, a
qudit state estimation or tomography problem can be
treated as a parameter estimation problem with θ as
the unknown parameter. Note that our convention in
Eq. (A4) is different from that used in some existing lit-
erature [48] but is equivalent up to a re-scaling of the
parameters, which leaves the ratio unchanged.

Appendix B: Proof of Generalised Gell-Mann
Matrix Identities

In this appendix, we prove the following identities

for Λd = {λj}d
2−1

j=1 .

1.
∑

j∈[n] λ
2
j = d2−1

d 1d

2.
∑

m∈[n] λmλjλm = − 1
dλj

3.
∑

j,k∈[n] λjλkλjλk = −d2−1
d2 1d

Proof of Identity 1. It is known that
∑

j∈[n] λ
2
j

is a group invariant called the Casimir operator [55].
Thus,

∑
j∈[n] λ

2
j = C 1d for some constant C. We use

the trace condition Tr(λjλk) = δjk

Tr

∑
j∈[n]

λ2
j

 =
∑
j∈[n]

Tr
(
λ2
j

)
= n = Cd, (B1)

which implies C = n/d, proving∑
j∈[n]

λ2
j =

d2 − 1

d
1d.

Proof of Identity 2. For this proof, we use some prop-
erties of GMMs from Ref. [56] (see page 17, Sec. 4.6
Gell-Mann Matrices in n-dimensions). Writing the prod-
uct λmλj in terms of the commutator and the anti-
commutator, we get

2λmλj = {λm, λj}+ [λm, λj ]

=
2

d
δmj1d +

∑
c

dmjcλc +
∑
c

ifmjcλc ,
(B2)

https://doi.org/10.48550/arxiv.2403.07106
https://doi.org/10.21468/SciPostPhysLectNotes.21
https://doi.org/10.21468/SciPostPhysLectNotes.21
https://arxiv.org/abs/1702.08246
https://arxiv.org/abs/1702.08246
https://doi.org/10.1140/epjd/e2013-40453-2
https://doi.org/10.1140/epjd/e2013-40453-2
https://doi.org/10.1088/1751-8113/47/42/424006
https://doi.org/10.1088/1751-8113/47/42/424006
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where djkl = Tr({λj , λk}λl) and fjkl = −iTr([λj , λk]λl)
are the fully-symmetric and fully-antisymmetric struc-
ture constants9 of su(d) [55, 56]. Repeating the process
after right-multiplying Eq. (B2) by λm,

2λmλjλm =
2

d
δmjλm +

∑
c

(dmjc + ifmjc)λcλm

=
2

d
δmjλm +

1

2

∑
c

(dmjc + ifmjc)

(
2

d
δcm1d

+
∑
p

(dcmp + ifcmp)λp

)

=
2

d
δmjλm +

1

d
(dmjm + ifmjm)1d

+
1

2

∑
c,p

(dmjc + ifmjc)(dcmp + ifcmp)λp

(B3)

Due to anti-symmetry, fmjm = 0, and

(dmjc + ifmjc)(dcmp + ifcmp)

=
[
(dmjcdcmp − fmjcfcmp)

+ i(dmjcfcmp + fmjcdcmp)
]
.

(B4)

Thus, ∑
m

λmλjλm =
1

d
λj +

1

2d

∑
m

dmjm︸ ︷︷ ︸
1

1d (B5)

+
1

4

∑
p

[∑
m,c

dmjcdcmp︸ ︷︷ ︸
2

−
∑
m,c

fmjcfcmp︸ ︷︷ ︸
3

(B6)

+i

(∑
m,c

dmjcfcmp︸ ︷︷ ︸
4

+
∑
m,c

fmjcdcmp︸ ︷︷ ︸
5

)]
λp. (B7)

Below we evaluate terms 1 , 2 , 3 , 4 and 5 one by
one, using properties of the GMMs listed in Ref. [56].

1 :
∑
m

dmjm =
∑
m

djmm

=
1

4
Tr

[
λj

∑
m

{λm, λm}

]
=

1

2
Tr

[
λj

d2 − 1

d
1d

]
=

d2 − 1

2d
Tr(λj) = 0

(B8)

9 Owing to different normalisation conventions, our dabc and fabc
are scaled up by a factor of

√
2 compared to Ref. [56].

2 :
∑
m,c

dmjcdcmp =
∑
m,c

djmcdpmc = 2
d2 − 4

d
δjp (B9)

3 :
∑
m,c

fmjcfcmp =
∑
m,c

fjmcfpmc = 2d δjp (B10)

The Jacobi identity [56] reads∑
k

dabkfkcl + dbckfkal + dcakfkbl = 0.

If we set a = c and then sum over a, we get

2
∑
a,k

dbakflak =
∑
k

(∑
a

daak

)
fblk.

Using this to simplify 4 , we get

4 :
∑
m,c

dmjcfcmp = −
∑
m,c

djmcfpmc = −1

2

∑
m,c

dmmcfjpc

(B11)

and, similarly, for 5 we get

5 :
∑
m,c

fmjcdcmp = −
∑
m,c

dpmcfjmc

=− 1

2

∑
m,c

dmmcfpjc =
1

2

∑
m,c

dmmcfjpc ,
(B12)

so that

4 + 5 :
∑
m,c

(dmjcfcmp + fmjcdcmp) = 0 . (B13)

Combining the expressions for 1 , 2 and 3 , we get

∑
m

λmλjλm =
1

d
λj +

1

4

∑
p

(
2
d2 − 4

d
− 2d

)
δjpλp

=
1

d
λj −

2

d
λj = −1

d
λj ,

(B14)

thus proving Identity 2.

Corollary 1. By linearity, any d× d traceless Hermitian
matrix A satisfies∑

m

λmAλm = −1

d
A. (B15)

Corollary 2. For any j, k ∈ [n],∑
m

λmλjλkλm = δjk1d −
1

d
λjλk. (B16)
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Proof. To see this, start with assuming j ̸= k. From
Eq. (B2), this implies λjλk is traceless Hermitian, and
thus from Corollary 1,∑

m

λmλjλkλm = −1

d
λjλk.

Similarly, for j = k, λjλk − 1
d1d is a traceless, Hermitian

matrix (see Eq. (B2)). Thus, from Corollary 1,∑
m

λm

(
λ2
j −

1

d
1d

)
λm = −1

d

(
λ2
j −

1

d
1d

)
,

so that ∑
m

λmλ2
jλm = 1d −

1

d
λ2
j . (B17)

This concludes the proof of Corollary 2.

Proof of Identity 3. Using Identity 2, we have

∑
j

λjλkλjλk =

∑
j

λjλkλj

λk = −1

d
λ2
k . (B18)

Summing over k and using Identity 1, we find∑
j,k

λjλkλjλk = −1

d

∑
k

λ2
k = −d2 − 1

d2
1d , (B19)

which proves Identity 3.

Appendix C: Deferred Proofs: Proof of Lemma 1

Proof of Lemma 1. The proof is segmented into three
parts. (i) First we establish that the Xj are completely
and uniquely determined by the local unbiasedness con-
ditions to be Xj = λj . This can be traced back to the
trace orthonormality Tr[λjλk] = δjk of GMMs. (ii) We
establish a lower bound on CHCRB. (iii) We show this
lower bound is achieved by valid choices of arguments Sθ
and L, implying CHCRB is equal to the lower bound.

Part (i): The local unbiased conditions

Tr[ρθXj ] = θj and Tr[∂jρθXk] = δjk (C1)

for j, k ∈ [d2 − 1] at θ = 0 become

Tr[Xj ] = 0 and Tr[λjXk] = δjk , (C2)

and are solved by Xj = λj as

Tr[λj ] = 0 and Tr[λjλk] = δjk. (C3)

It is simple to verify that any other solution Xj , which by
virtue of being traceless and Hermitian must be a linear
combination of λks as

Xj =
∑
k

cj,kλk cj,k ∈ C, (C4)

has to satisfy Tr[λjXk] = ck,j = δjk, so Xj = λj , leading
to a contradiction.
Part (ii): Tracing over the parameter indices (Tr) in

Tr[SθL] ≽ Tr
[
SθXX⊤] (C5)

yields

Tr[SθL] ≥ Tr[SθXX⊤]. (C6)

Remark 1. The inequality in Eq. (C6) holds regardless
of whether L = XX⊤ is a valid choice according to the
constraints in Eq. (7). In the case where there is a unique
set of LUB estimators X, this reduces to CHCRB ≥ CSLD.
We utilise this fact in Sec. IVB, Appendix F, and Ap-
pendix G.

Part (iii): The choice L = XX⊤ leads to

(Tr[SθL])j,k = Tr[1/d λjλk] = δjk/d, (C7)

which is real, symmetric and has trace (over parameter
indices)

Tr[SθL] = Tr[SθXX⊤] =
d2 − 1

d
. (C8)

Finally, from part (ii) we know that a lower Tr[SθL] is
not possible, thus proving Eq. (22).

Appendix D: SLD & RLD CRBs

The two simplest quantum Cramér-Rao bounds, the
SLD and the RLD, generalise the logarithmic derivative
of a parameterised probability distribution,

∂θpθ(x) = pθ(x)∂θ [log(pθ(x))] , (D1)

to linear operators acting on the density matrix ρθ. The

SLD version produces Hermitian operators {L(SLD)
j } and

the RLD version produces operators {L(RLD)
j } defined

implicitly via

2∂jρθ =: L
(SLD)
j ρθ + ρθL

(SLD)
j , (D2)

∂jρθ =: ρθL
(RLD)
j . (D3)

Once Eqs. (D2) and (D3) are solved for {L(SLD)
j }

and {L(RLD)
j }, the corresponding QFIs can be computed

using[
J (SLD)

]
jk

:= Re
[
Tr
[
ρθL

(SLD)
j L

(SLD)
k

]]
, (D4)[

J (RLD)
]
jk

:= Tr

[
ρθL

(RLD)
k L

(RLD)
j

†
]
. (D5)

Notably, J (SLD) is real and symmetric and J (RLD) is com-
plex and Hermitian. Finally, the traced versions of the
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SLD and RLD QFI matrix inequalities Vθ ≽ J (SLD)−1

and Vθ ≽ J (RLD)−1
yield the scalar SLD and RLD CRBs

Tr(Vθ) ≥ CSLD & Tr(Vθ) ≥ CRLD , (D6)

with

CSLD = Tr
[
J (SLD)−1

]
, (D7)

CRLD = Tr

[
Re
[
J (RLD)

]−1
]

(D8)

+

∥∥∥∥Im [J (RLD)
]−1
∥∥∥∥
1

,

where ∥X∥1 := Tr
(√

X†X
)
denotes the trace norm. The

SLD and RLD CRBs are not attainable in general, espe-
cially in multi-parameter contexts. For more details on
the SLD and RLD CRB, see Ref. [13].

For the model in Sec. IVA, ρ∗θ = 1d/d and ∂jρθ = λj ,
so Eqs. (D2) & (D3) become

2λj = 2/d LSLD
j ,

λj = 1/d LRLD
j

(D9)

implying LSLD
j = LRLD

j = dλj . A direct computation of
Eqs. (D4), (D5), (D7) & (D8) then yields the QFIs

J (SLD) = J (RLD) =


d 0 . . . 0

0 d . . .
...

...
...

. . . 0
0 . . . 0 d


n×n

, (D10)

and the scalar CRBs

CSLD = CRLD =
d2 − 1

d
, (D11)

as in main text Eqs. (19) and (20).

Appendix E: Deferred Proofs: Proof of Lemma 2

1. SDP Formulation and Dual Problem

The SDP formulation of the NHCRB [19] is

CNHCRB := min
Y

[
Tr[F0Y]|Tr[FkY] = ck, F0 =

(
Sθ 0
0 0

)
,

Y ≥ 0
]
,

(E1)

where Fk are constant matrices and ck are constants, as
defined in Ref. [19] (supplementary note 4). The dual
problem to the SDP in Eq. (E1) reads

C̃NHCRB := max
y

[∑
k

ykck|
∑
k

ykFk ≤ F0

]
. (E2)

In the following two lemmas, we present solutions to
the primal and dual problems.

Lemma 3. The optimal L for the primal problem in
Eq. (4) is

L∗
jk = d+1/d+2 ({λj , λk}+ δjk1d) (E3)

where j, k ∈ [n] and {λj , λk} is the anti-commutator.

Lemma 4. The optimal y for the dual problem in
Eq. (E2), y∗, is such that

∑
k

y∗kFk =



0 G(1)
12 . . . G(1)

1n G(2)
1

G(1)
21 0 . . . G(1)

2n

...
...

...
. . . G(1)

(n−1)n

G(1)
n1 . . . G(1)

n(n−1) 0 G(2)
n

G(2)
1 . . . G(2)

n G(3)


(E4)

with

G(1)
jk = −1/d [λj , λk]

G(2)
j = d+1/d λj

G(3) = −(d2−1)(d+1)/d2 1d,

(E5)

where j, k ∈ [n] and [λj , λk] is the commutator.

The proof of Lemmas 3 and 4 is broken up into the
following three subsections. In Subsec. E 2, we prove the
feasibility of L∗ from Lemma 3. In Subsec. E 3 we prove
the feasibility of y∗ from Lemma 4. Finally in Subsec. E 4
we prove that the primal-objective value from L∗ equals
the dual objective value from y∗, thus establishing their
optimality and proving Lemma 2 from the main text.

2. Feasibility of L∗ for the Primal Problem

The L∗
jk from Lemma 3 is easily seen to be symmetric

in j and k, meaning L∗
jk = L∗

kj . L∗
jk is also seen to

be Hermitian. To show L∗ is feasible, it only remains
to show L∗ − XX⊤ ≥ 0. Writing L∗ − XX⊤ as a block
matrix,

(L∗ − XX⊤)jk =
d+ 1

d+ 2
({λj , λk}+ δjk1d)− λjλk

=
d+ 1

d+ 2

(
δjk1d + N1jk − N2jk

) (E6)

we see that we need to prove N := 1nd + N1 − N2 ≥ 0,
where we have defined block matrices

(N1)jk := λkλj & (N2)jk :=
λjλk

d+ 1
.
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We first evaluate (N1 − N2)
2 = N2

1 + N2
2 − N1N2 − N2N1

to find

(N2
1)jk = δjk1d − 1/dλjλk

(N2
2)jk =

d− 1

d(d+ 1)
λjλk

(N1N2)jk = − 1

d(d+ 1)
λjλk

(N2N1)jk = − 1

d(d+ 1)
λjλk,

(E7)

where we have used the identities proven in Appendix B.
Combining these results we arrive at

(
(N1 − N2)

2
)
jk

=

δjk1d which means (N1 − N2)
2 = 1nd. From this, and

using that N1 − N2 is Hermitian, we can conclude that
the eigenvalues of N1−N2 are ±1. Hence the eigenvalues
of N = 1nd +N1 −N2 are 0 and 2. This proves that N is
a positive semi-definite operator, and that L∗ − XX⊤ ≥
0.

3. Feasibility of y∗ for the Dual Problem

We need to show that the matrix
∑

k y
∗
kFk, which ex-

plicitly is

0 1
d [λ2, λ1] . . . 1

d [λn, λ1]
d+1
d λ1

1
d [λ1, λ2] 0 . . . 1

d [λn, λ2]
...

...
...

. . . 1
d [λn, λn−1]

1
d [λ1, λn] . . . 1

d [λn−1, λn] 0 d+1
d λn

d+1
d λ1 . . . d+1

d λn −n(d+1)
d2 1d

 ,

(E8)
satisfies F0 −

∑
k y

∗
kFk ≥ 0. Note that this

∑
k y

∗
kFk

corresponds to y∗j values

y
(1)
j = 0, y

(2)
jk =

d+ 1

d
δjk, y

(3)
jk = 0 (E9)

y
(4)
jkl = −fjkl/d, y

(5)
j = −n(d+ 1)

d
√
d

δj1 (E10)

whereas the corresponding cj values are

c
(1)
j = 0, c

(2)
jk = 2δjk, c

(3)
jk = 0 (E11)

c
(4)
jkl = 0, c

(5)
j =

√
dδj1 (E12)

so that the dual objective value is∑
j

2y
(2)
jj +

√
dy

(5)
j =

2n(d+ 1)

d
− n(d+ 1)

d
=

n(d+ 1)

d
.

(E13)
To show this y∗ is feasible, note that proving F0 −∑
k y

∗
kFk ≥ 0 is equivalent to showing
1d [λ1, λ2] . . . [λ1, λn] −(d+ 1)λ1

[λ2, λ1] 1d . . . [λ2, λn]
...

...
...

. . . [λn−1, λn]
[λn, λ1] . . . [λn, λn−1] 1d −(d+ 1)λn

−(d+ 1)λ1 . . . −(d+ 1)λn
n(d+1)

d 1d



is positive semi-definite. Using Schur’s complement
lemma, this can be simplified to showing

1d [λ1, λ2] . . . [λ1, λn]
[λ2, λ1] 1d . . . [λ2, λn]

...
...

. . . [λn−1, λn]
[λn, λ1] . . . [λn, λn−1] 1d



− d

d− 1


λ2
1 λ1λ2 . . . λ1λn

λ2λ1
. . . . . .

...
...

...
...

λnλ1 λnλ2 . . . λ2
n

 ≥ 0 (E14)

We rewrite the left hand side of Eq. (E14) in the block-
matrix representation as

δjk1d + [λj , λk]−
d

d− 1
λjλk

= δjk1d −
1

d− 1
λjλk − λkλj

= (1nd)jk −
(
(M1)jk + (M2)jk

)
,

where we have defined

(M1)jk :=
1

d− 1
λjλk & (M2)jk := λkλj . (E15)

Thus, we finally need to prove the following theorem to
establish the feasibility of y∗.

Theorem 4. The operator M := 1nd − (M1 + M2) is
positive semi-definite.

Before we can prove Theorem 4, we first need to prove
the following two lemmas.

Lemma 5. M1 and M2 commute, i.e., M1M2 = M2M1.

Proof. Using Identity 2 from Appendix B, we have

(M1M2)jk =
∑
l

(M1)jl(M2)lk =
1

d− 1

∑
l

λjλlλkλl

=
1

d− 1
λj

(
−1

d
λk

)
= − 1

d(d− 1)
λjλk ,

(E16)

whereas

(M2M1)jk =
∑
l

(M2)jl(M1)lk =
1

d− 1

∑
l

λlλjλlλk

=
1

d− 1

(
−1

d
λj

)
λk = − 1

d(d− 1)
λjλk.

(E17)

Hence M1M2 = M2M1, which also implies that M1 and
M2 share some eigenvectors.

Lemma 6. M1 + M2 satisfies (M1 + M2)
2 = 1nd or,

equivalently, [
(M1 +M2)

2
]
jk

= δjk1d

where j, k ∈ [n].
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Proof.[
(M1 +M2)

2
]
jk

=
∑
l

(M1 +M2)jl (M1 +M2)lk

=
∑
l

(
1

d− 1
λjλl + λlλj

)(
1

d− 1
λlλk + λkλl

)

=
1

(d− 1)2
λj

(∑
l

λ2
l

)
λk +

∑
l

λlλjλkλl

+
1

d− 1

[
λj

(∑
l

λlλkλl

)
+

(∑
l

λlλjλl

)
λk

]

so using Corollary 2 and Identities 1 and 2,

= δjk1d +

(
d2 − 1

d(d− 1)2
− 1

d
− 1

d(d− 1)
− 1

d(d− 1)

)
λjλk

= δjk1d.

Now we can prove Theorem 4 as follows.

Proof of Theorem 4. From Lemma 6, the eigenvalues
of (M1+M2)

2 must all be 1. As (M1+M2) is Hermitian,
its eigenvalues must be ±1. It follows that the eigen-
values of M = 1nd − (M1 + M2) must be either 2 or 0.
Hence M, being a Hermitian matrix with non-negative
eigenvalues, must be positive semi-definite.

4. Optimality of Solutions & Proof of Lemma 2

Proof of Lemma 2. Note that, by direct calculation,

Tr(SθL∗) =
∑
k

y∗kck =
(d2 − 1)(d+ 1)

d
. (E18)

In other words, L∗ is primal-feasible and y∗ is dual-
feasible and the primal value equals the dual value. This
lets us conclude that (d2−1)(d+1)/d is the true optimal
value of the primal and dual problems, and that L∗

and y∗ are optimal solutions to the primal and dual prob-
lems, respectively. As a result, we have

CNHCRB =
(d2 − 1)(d+ 1)

d
. (E19)

5. Attainability of NHCRB via SIC POVMs

Lemma 7. The CFI matrix for estimating all GMMs
from the maximally-mixed state ρm by measuring the SIC

POVM in d dimensions is

J =


d

d+1 0 · · · 0

0 d
d+1 · · · 0

...
...

. . .
...

0 0 . . . d
d+1


n×n

. (E20)

Proof of Lemma 7. In the multi-parameter case, the CFI
matrix Jjk (j, k ∈ [n]) is given by

Jjk [{Πl}] =
d2∑

m=1

Tr [∂jρθΠm] Tr [∂kρθΠm]

Tr [ρθΠm]
, (E21)

From [57] we have that for any (rank-one) SIC POVM

{Πm}d2

m=1,

d2∑
m=1

Tr[ρΠm]
2
=

Tr
[
ρ2
]
+ 1

d(d+ 1)
(E22)

for arbitrary density matrix ρ. For the diagonal elements
in Eq. (E21), substituting ρ = 1/d+ θjλj into Eq. (E22)
and using Tr

(
ρ2
)
= 1/d+ θ2j gives

Jjj = d2
d2∑

m=1

Tr [λjΠm]
2
=

d

d+ 1
, (E23)

whereas for the off-diagonal elements, substituting ρ =
1/d + θjλj + θkλk into Eq. (E22) and using Tr

(
ρ2
)
=

1/d+ θ2j + θ2k gives

Jjk = d2
d2∑

m=1

Tr[λjΠm] Tr[λkΠm] = 0 (j ̸= k), (E24)

thus proving Eq. (E20).

Appendix F: Estimating a Subset of GMMs

Consider estimating a subset {λj}j∈K of GMMs from
the maximally-mixed state ρm. Here K denotes a subset
of n indices from 1 to nmax (K ⊆ [nmax], |K| = n). Now,
the corresponding unbiased estimators can be written as

Xj = λj +
∑

m∈[nmax]\K

cjmλm, j ∈ K, cjm ∈ R, (F1)

which follows from the unbiasedness conditions in
Eq. (17). Specifically, Tr(∂jρθXk) = Tr(λjXk) = δjk
forces each Xj to contain a unit contribution from λj due
to the orthonormality of the GMMs and Tr(ρθXj) = θj
implies the only other GMMs contributing to Xj must
be the ones not being estimated.
Notice that at the block-matrix level, this can be

rewritten as

X =

[
1n C(1)

n×(nmax−n)

]
n×nmax

Λd , (F2)
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where X := [X1, . . . , Xn]
⊤,Λd := [λ1, . . . , λnmax

]⊤

and C(1)
ab = cab. For convenience, we also define

C(2) :=

[
1n C(1)

n×(nmax−n)

]
n×nmax

(F3)

so that XX⊤ = C(2)ΛdΛ
⊤
d C(2)⊤.

We can now use the lower bound CHCRB ≥
Tr
[
SθXX⊤] from Remark 1 to get

CHCRB ≥ 1

d

n+
∑
a,b

(C(1)
ab )

2

 ≥ n

d
. (F4)

Moreover, as in Appendix C, L = XX⊤ is a valid choice
leading to

(Tr[SθL])j,k =
1

d

δjk +
∑

l∈[nmax]\K

C(1)
jl C

(1)
kl

 , (F5)

which is real, symmetric and gives Tr[SθL] = Tr
[
SθXX⊤].

This proves

CHCRB =
n

d
(F6)

following the same arguments as Appendix C. For esti-
mating all nmax parameters this reduces to Lemma 1.
Numerical checks also verify this result, as shown, e.g.,
in Table I.

Notice that ΛdΛ
⊤
d is the same as XX⊤ from Lemma 3,

so that, using the fact that C(2)⊤C(2) ≽ 0, we can mod-
ify L∗ from Lemma 3 as

L∗∗(C(1)) := C(2)L∗C(2)⊤ . (F7)

It then follows from Lemma 3 that

L∗ − ΛΛ⊤ ≽ 0

=⇒ C(2)
(
L∗ − ΛΛ⊤)C(2)⊤ ≽ 0

=⇒ L∗∗ − XX⊤ ≽ 0 .

(F8)

That this L∗∗ satisfies the other NHCRB constraints
(L∗∗

jk = L∗∗
kj Hermitian from Eq. (4)) for all C(1) is also

easy to check.
Note that CNHCRB is now defined by the following min-

imisation:

CNHCRB := min
L,C(1)

{
Tr[SθL | Ljk = Lkj Hermitian ,

L ≽ [ 1n C(1) ] ΛΛ⊤ [ 1n C(1) ]
⊤
}
,

(F9)

whereas if we restrict the minimisation over L to a min-
imisation over our ansatz L∗∗(C(1)), we should get a

larger value than CNHCRB, i.e.,

min
L,C(1)

{
Tr[SθL | Ljk = Lkj Hermitian ,

L ≽ [ 1n C(1) ] ΛΛ⊤ [ 1n C(1) ]
⊤
}

≤ min
C(1)

{
Tr[SθL∗∗ | L∗∗

jk = L∗∗
kj Hermitian ,

L∗∗ ≽ [ 1n C(1) ] ΛΛ⊤ [ 1n C(1) ]
⊤
}
.

(F10)

This is because the minimisation on the RHS of Eq. (F10)
is over a subset of the set over which the minimisation
on the LHS is performed. The quantity on the RHS of
Eq. (F10) can then be simplified to

min
C(1)

d+ 1

d

n+
∑
a,b

(
C(1)

ab

)2 =
(d+ 1)n

d
.

This lets us upper-bound CNHCRB as

CNHCRB ≤ (d+ 1)n

d
, (F11)

which for estimating all nmax parameters reduces to
Eq. (31) from Subsec. IVB. Combining with CHCRB =
n/d, we find

CNHCRB

CHCRB
≤ d+ 1 , (F12)

as claimed in Theorem 3. Numerically, we see this ratio
actually depends on n: as n increases up to nmax, the
ratio increases up to d + 1. Table I lists out CHCRB,

# parameters CHCRB Range:CNHCRB Max Ratio

2 2/3 (2/3, 4/3) 2

3 1 (3/2, 3) 3

4 4/3 (2.85, 4.0834) 3.0625

5 5/3 (25/6, 5.4352) 3.2611

6 2 (6, 7.0922) 3.5461

7 7/3 (8.437, 8.495) 3.6408

8 8/3 32/3 4

TABLE I. HCRB and NHCRB for estimating a sub-
set {λj}j∈K ⊆ Λ3 of GMMs for the maximally-mixed qutrit
state. The HCRB depends only on the number of parame-
ters, |K|, but the NHCRB depends on the subset K chosen,
so we tabulate its range in the third column, as (Min NHCRB,
Max NHCRB). The fourth column lists the maximum ratio
between the NHCRB and the HCRB, taking into account all
possible subsets {λj}j∈K .

the minimum and maximum values of CNHCRB and the
maximum ratio for estimating a given number of GMMs
on qutrits. The HCRB only depends on n but not on
which GMMs are chosen and is equal to n/d.
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Appendix G: Extension to Arbitrary Weight
Matrices

In this section, we extend the ratio bound of d +
1 for the linear GMM model to arbitrary parameter-
independent full-rank weight matrices W . For fair com-
parison with the unweighted case, corresponding to W =
1n, we trace-normalise Tr(W ) = n. Additionally, W
must be real, symmetric, and positive semi-definite (W ≽
0). This weighted model then corresponds to reparame-
terisations of the linear GMMmodel [13, 19, 50], i.e., esti-
mating any nmax parameters that are not necessarily co-
efficients of the GMMs. Similar to the other cases where
all nmax parameters are estimated, the unbiased estima-
tors are uniquely fixed to be Xj = λj . We first bound
the weighted HCRB, and then the weighted NHCRB, to
prove the ratio is at most d+1 for the maximally-mixed
case. Then, to extend to arbitrary states, we numerically
demonstrate that for fixed W , the ratio for ρm is always
larger than the ratio for any other ρθ but we do not give
a proof.

The weighted HCRB is defined via [41]

CW
HCRB[ρθ] := min

V ∈Rn×n,

V=V ⊤

{Tr[WV ] | V ≽ Zθ[X]} , (G1)

where, by explicit computation for the maximally-mixed
case, Zθ[X]jk = Tr[ρmXjXk] = δjk/d or Zθ[X] = 1/d1n.
Then, it follows from the positivity ofW that V ≽ 1/d 1n

implies

WV ≽
1

d
W =⇒ Tr[WV ] ≥ Tr[W ]/d =

n

d
. (G2)

This proves CW
HCRB[ρm] ≥ n/d.

The weighted NHCRB is defined via [19]

CW
NHCRB[ρθ] := min

L

{
Tr[WV ] | V = Tr[SθL]

Sθ = 1n ⊗ ρθ, Ljk = LkjHermitian ,

L ≽ XX⊤

}
.

(G3)

Notably, the feasibility constraints on L are unchanged
from the unweighted case, i.e., the optimal L∗ from
Lemma 3 still satisfies L∗

jk = L∗
kj Hermitian and L∗ ≽

XX⊤, despite not being optimal for the minimisation in
Eq. (G3). This sub-optimal L∗ thus yields an upper
bound to the minimum in Eq. (G3),

CW
NHCRB[ρm] ≤ Tr

[
W Tr

[
1

d
1ndL∗

]]
=

d+ 1

d
Tr[W ] =

n(d+ 1)

d
,

(G4)

which proves CW
NHCRB[ρm] ≤ n(d + 1)/d. Combining

with CW
HCRB[ρm] ≥ n/d then proves the claim,

CW
NHCRB[ρm]

CW
HCRB[ρm]

≤ d+ 1 . (G5)
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FIG. 4. Comparison of the weighted ratio CW
NHCRB/C

W
HCRB

for arbitrary states ρθ to the equally-weighted ratio for the
maximally-mixed state ρm, for the full-parameter linear GMM
model (5000 samples). The points are colour-coded by the
purity of ρθ and the grey line corresponds to y = x.

So far, in this weighted tomography setting, which
is equivalent to full tomography in arbitrary basis,
we have established the ratio to be at most d + 1
only for the maximally-mixed state. We do not prove
the bound for arbitrary states but numerically demon-
strate its validity in Fig. 4. By generating ran-
dom full-rank, real, symmetric and positive W , such
that Tr(W ) = n, and random full-rank states ρθ, we
compare the ratio CW

NHCRB[ρm]/C
W
HCRB[ρm] to the ra-

tio CW
NHCRB[ρθ]/C

W
HCRB[ρθ]. Repeating this over 5000

random samples of W and ρθ, we find the weighted ra-
tio for ρm to always be larger than the equally-weighted
ratio for the maximally-mixed state. This means

CW
NHCRB[ρθ]

CW
HCRB[ρθ]

≤ CW
NHCRB[ρm]

CW
HCRB[ρm]

≤ d+ 1 , (G6)

thus establishing the upper bound of d+ 1 for arbitrary
full-parameter estimation from any state.

Appendix H: Gill-Massar Cramér-Rao Bound

An alternative proof that the SIC POVM consti-
tutes an individual-optimal measurement can be estab-
lished via Gill-Massar’s inequality for individual mea-
surements [21],

Tr[J (SLD)−1
J ] ≤ d− 1 . (H1)

For the SLD QFI J (SLD) in Eq. (19), the inequality in
Eq. (H1) implies that Tr(J−1) ≥ (d2−1)(d+1)/d, which
is saturated by the SIC POVM CFI J from Eq. (27), as
seen in Eq. (28). In fact, the Gill-Massar Cramér-Rao
bound (GMCRB) [21], obtained from Eq. (H1) by in-
serting the classical CRB from Eq. (2), is identical to the
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NHCRB for the full-parameter linear GMM model. This
follows from the inequality in Eq. (H1) being saturated
in this case (Sec. VC below Eq. (54) in [21]). We fur-
ther numerically verify this equivalence in Fig. 5, where
we plot the two bounds for estimating all 8 GMM co-
efficients from 2000 random qutrit states. Both bounds
agree for this case, as evidenced by the points all lying
on the y = x line. However, this equivalence raises the
question of why we choose the NHCRB over the GMCRB
as our main tool to quantify finite-copy precision, which
we now answer.
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FIG. 5. Comparison of the NHCRB and the GMCRB for
tomography in the GMM basis (n = 8, d = 3). The two
bounds are equal for the 2000 randomly-generated states and
are color-coded by purity of the state.

In short, the NHCRB is a tighter bound than the GM-
CRB in many cases of interest, and has a sub-additive
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FIG. 6. Comparison of the two-copy to one-copy ratio for the
NHCRB and the GMCRB. Bounds correspond to tomography
in the GMM basis (n = 8, d = 3) for 5000 random states.
The GMCRB is additive and underestimates the two-copy
enhancement except for pure states, where the two bounds
agree and there is no two-copy enhancement.
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FIG. 7. Comparison of the NHCRB and the GMCRB, nor-
malised by the HCRB, for estimating fewer than nmax param-
eters via individual measurements. The bounds are calculated
for 2000 random qutrit states with number of parameters n
ranging from two to eight. The NHCRB is tighter than the
GMCRB for this model.

scaling with number of copies similar to CMI, whereas the
GMCRB is additive with number of copies. The multi-
copy GMCRB [21] is defined via
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⊗k
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V
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where (k) represents k-copy quantities. Rephrasing the

minimisation in Eq. (H2) in terms of kV
(k)
θ directly leads

to

CGMCRB[ρ
⊗k
θ ] =

1

k
CGMCRB[ρθ] , (H3)

meaning the GMCRB is additive for measuring k copies
of ρθ simultaneously. This complements the well-known
additivity of the SLD QFI (Eqs. (72) & (73) in [58]), on
which the GMCRB is based.
For k = 2, Eq. (H3) implies that the ratio of the two-

copy bound to the one-copy bound is exactly half for
the GMCRB, as can be seen in Fig. 6. In Fig. 6, we
compare the ratio of two-copy to one-copy bounds for
the NHCRB and the GMCRB over 5000 randomly gen-
erated qutrit states. It is clear that the NHCRB is not
additive with respect to number of copies; instead, the
two-copy NHCRB is always smaller than the two-copy
GMCRB, except for pure states where the two bounds
agree. This subadditivity of the NHCRB and additivity
of the GMCRB can be attributed to the fact that the k-
copy GMCRB considers individually measuring each of
the k copies, whereas the k-copy NHCRB considers mea-
suring the k-copies simultaneously or collectively. As a
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result, the gap between two-copy NHCRB and GMCRB
represents the increase in precision from two-copy mea-
surements compared to one-copy measurements. Notably
the optimal Fisher information is also not additive under
tensoring.
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FIG. 8. Evolution of the qutrit individual-optimal measure-
ments from SIC POVM (red) to IC POVMs (all other colours)
as purity of ρθ increases from 1/3 for the maximally-mixed
state to 1 for pure states.

Moreover, for estimating fewer than nmax parameters,
the NHCRB is strictly higher than the GMCRB even in
the one-copy case, i.e., the former is a tighter bound.
Fig. 7 depicts this by considering the estimation of 2
to 8 arbitrary parameters from 2000 randomly gener-
ated qutrit states (following the same methodology as
used in Fig. 3 to generate the states and parameters).
The GMCRB and NHCRB are computed for this model
and are both normalised by the HCRB. It is clear that
all the plotted points lie above the y = x line, numeri-
cally demonstrating that the NHCRB is tighter than the
GMCRB in this case. Nonetheless, Fig. 7 also reveals
an increasing trend of the ratio between the individual-
optimal and collective-optimal precisions with number of
parameters, irrespective of the particular choice of the
individual-precision bound.

Appendix I: Optimal IC POVMs for Arbitrary
States

In this section we numerically investigate the optimal
POVMs saturating the NHCRB for the full-parameter
linear GMM model and for arbitrary states ρ∗θ. As the
purity of ρ∗θ increases from 1/d to 1, the optimal individ-
ual measurements evolve from SIC POVMs to distorted
IC POVMs. This transition is depicted in Fig. 8, where
the inner products between the POVM vectors are equal
at minimum purity but spread out with increasing pu-
rity. For Fig. 8, we first generate 500 random mixed
qutrit states by uniformly-randomly choosing the param-
eters {θj} and rejection-sampling to ensure the positivity
of ρθ. For each state, we numerically solve for the optimal
one-copy, d2-element, rank-one POVM and ensure that

it saturates the NHCRB. Then we compute the inner-
product between every pair of elements of this optimal
POVM. We then bin the states into 57 purity intervals
and average the sorted list of inner products over each
interval. Finally, we plot these sorted inner-products for
each purity interval, colour-coded by the average purity
of that interval.

Appendix J: Random-Sampling of States and
Parameters

For the random-sampling experiments in Fig. 2, we
generate random mixed qudit states by first generat-
ing an entry-wise random d × d complex matrix S,
and then assigning ρθ = SS†/Tr

(
SS†). This proce-

dure ensures ρθ = ρ†θ, ρθ ≽ 0 and Tr(ρθ) = 1. The
true GMM coefficients (θ∗ for the GMM model) can be
found via Tr(ρθλj). Unfortunately, this procedure gen-
erates low-purity states with a much higher probabil-
ity than high-purity states, which becomes a problem
for d = 3 and 4. We circumvent this issue by gen-
erating additional samples by taking convex combina-
tions of already-sampled states, which, despite making
the sampling non-uniform, allows us to fully explore the
region of allowed ratios for fixed purity. Specifically, for
randomly-generated ρθ, we consider the convex combi-
nations (1 − p)ρθ + p1d/d and (1 − p)ρθ + p |+⟩⟨+|d,
where (p ∈ [0, 1]). We compute the ratio for the full-
parameter linear GMM model for all these states, the
random samples and their convex combinations, to pro-
duce the yellow points in Fig. 2. The ratio-maximising
(red) and -minimising states (blue) at fixed purity are
found by numerically maximising and minimising the ra-
tio over the state space.
For the random-sampling experiments in Figs. 3 and 9,

we generate random mixed qudit states by the following
technique. For each d and n, we uniformly-randomly
choose nmax coefficients {ϕj}j∈[nmax] from the inter-

val
[
−
√
(d− 1)/d,

√
(d− 1)/d

]
. These define a random

state ρθ = 1d +
∑

j∈[nmax]
ϕjλj which is guaranteed to

be trace-one and Hermitian, but not positive. We ensure
the positive semi-definiteness of ρθ by rejection sampling
(discarding if it is not positive). This process generates a
valid random qudit state. Next we generate the n ar-
bitrary parameters {θj}j∈[n] by generating at random
the parameter derivatives ∂jρθ, which must be Hermi-
tian and traceless. We do this by writing each ∂jρθ in
the GMM basis and randomly generating the coefficients
in this basis. Then we rejection-sample to ensure the n
parameter derivatives are linearly-independent, and lead
to a valid model.
Fig. 9 indicates that the 104 number of samples is rel-

atively small for higher d and n—the minimum ratio ob-
served, which should be close to one, is much larger for
large d and n. This is because our sampling method gen-
erates states with low purity with higher probability and
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FIG. 9. Bubble plot of random sampling data for the ratio between the NHCRB and the HCRB for estimating arbitrary
parameters from arbitrary qudit states. Bubbles are plotted on a grid over qudit dimension d and number of parameters n.
The size (diameter) of the bubbles indicate the minimum, the average and the maximum ratios sampled for each d and n, and
the numerical labels are the maximum ratio up to three significant figures.

states with high purity with lower probability. As a re-
sult, the increasing or decreasing trends of the maximum

observed ratio with n or d are not perfect for large d
and n in Fig. 3.
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