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Abstract

The dissociation micro-states (DMS) of an N -protic acid are described using set

theory notation. This facilitates the mathematical description of the dissociation micro-

equilibrium (DME). In particular, the DME constants are easily obtained in terms of

the dissociation equilibrium constants and the molar fractions of the DMSs. Repres-

enting of the DMEs in terms of graph theory allows to identify permutations between

DMSs that preserve the vertex-edge connectivity of the graph. These permutations,

along with their composition, allow us to identify the direct product of the cyclic group

C2, and the symmetric group SN , C2 × SN , as the graph automorphism group of the

micro-dissociation of N -protic acids.

Introdution

Chemical applications of Graph Theory have origin in the earlier works on the enumeration

of chemical isomers [1–7] and the depiction of molecules [6, 8]. To date, there are numer-

ous chemical applications of graph theory in research fields such as biochemistry, chemical

kinetics, catalysis, quantum chemistry, NMR spectroscopy, chemoinformatics, and new drug

discovery, among others [9–13]. In chemoinformtics, graph theory has been instrumental

1

ar
X

iv
:2

40
5.

09
69

2v
1 

 [
ph

ys
ic

s.
ch

em
-p

h]
  1

5 
M

ay
 2

02
4

caarango@icesi.edu.co


in finding similarities between molecules to discover new drugs [14, 15]. Applications of

graph theory to chemical reaction networks have allowed the description and representation

of complex reaction mechanisms using topological and complexity indices [16–22]. Reac-

tion networks and graph theory have been used to study the dissociation of weak acids

and bases. For example, the method of exponential polytopes has been employed to ob-

tain approximate formulas for the pH of monoprotic weak acids [17]. Graph kernels have

been utilized to estimate acid/base dissociation constants in molecules of biopharmaceutical

interest [23]. Graph convolutional neural networks have been used for predicting the pKa

values and protonation state distribution of molecules of pharmaceutical interest [24]. In

homogeneous catalysis graph-theoretical methodology has been proposed for the explora-

tion of the chemical reaction space of multicomponent mixtures [13]. In quantum chemistry

weighted-graph-theoretical approaches are used to compute contributions from many-body

approximations in post-Hartree-Fock molecular dynamics [25].

In biochemistry, graph theory methods have been employed to analyze the covalent and

non-covalent bond networks in proteins, allowing for the identification of flexible and rigid

regions in these biomolecules [26]. Additionally, in biochemistry, graph convolutional net-

works have been used for automated function prediction of proteins from the protein struc-

ture [27]. Dynamical graph analysis of the hydrogen bond network has allowed to study

structural changes in membrane proteins, and the identification of protein groups relevant

for proton transfer activity [28].

Algebraic graph theory applies algebraic methods to graphs [29]. The connection between

graphs and group theory is one of the main branches of algebraic graph theory [30]. The

permutations of the vertices of a graph that maintain the edge-vertex connectivity endowed

with the composition operation define the automorphism group of the graph. In chemistry

obtaining the automorphism group of a an associated graph is important in spectroscopy,

quantum chemistry, structural elucidation and prediction of NMR spectrum of molecules,

and in the characterization of molecular complexity, among other applications [31–35].
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A polyprotic Brønsted-Lowry acid is a substance capable of donating more than one

proton [36, 37]. These protons are released one by one in the consecutive (macroscopic)

model, from the most acidic to the least acidic. The concentration of the chemical species

involved in the consecutive dissociation model are obtained from the macroscopic equilib-

rium constants, the auto-ionization of water, and the balances of mass and charge of the

acid dissolution [38–41]. In the non-consecutive (microscopic) dissociation model, the N

protons are released independently. The concentrations of the chemical species involved

in the non-consecutive dissociation are obtained from the micro-equilibrium constants, the

auto-ionization of water, and the balances of charge and mass [42, 43]. Micro-equilibrium

constants and concentrations are important in biochemistry and pharmaceutical sciences [44–

50]. The relations between microscopic and macroscopic equilibrium constants of polyprotic

acids were developed by Hill [51].

This work is organized as follows. Sections and are used to introduce the consecutive

and non-consecutive acid dissociation models, respectively, along with the corresponding

notation based on sets. Section demonstrate that the use of a notation based on set theory

simplifies the complicated expression obtained by Hill in terms of indices, allowing for a

general expression to be derived for the micro-equilibrium constants. These are expressed

in terms of the equilibrium constants and the molar fractions of the tautomers of the acid’s

dissociation states. Examples of the diprotic and triprotic acids are provided in section . In

section , the use of graph theory to represent the micro-dissociation of polyprotic acids and to

obtain their graph automorphism group is explored. The aqueous dissociation of monoprotic,

diprotic, and triprotic acids is thoroughly examined, identifying aut(GN) = C2 × SN as the

automorphism group of the N -protic acid dissociation.
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Theory and Methods

Consecutive dissociation of polyprotic acids

The aqueous dissociation equilibrium of a polyprotic weak acid HNB is given byN consecutive

acid dissociations plus the water auto-ionization,

Zν−1 +H2O −−→←−− H3O
+ + Zν , 1 ≤ ν ≤ N , (1)

2H2O −−→←−− H3O
+ +OH−, (2)

respectively. The equilibria displayed by equations (1) and (2) are effective equilibria since

the N protons of HNB can dissociate separately and not necessarily consecutively [42, 43, 48].

The acid HNB has N + 1 deprotonation states (DS)

Zν = HN-νB
ν−, ν = 0, 1, 2, . . . ,N , (3)

with Z0 = HNB as the fully protonated state, and ZN = BN− as the fully deprotonated state.

The activities of the DSs Zν are given by aν(Zν) = γν [Zν ]/C
◦, with γν as the molar activity

coefficient, [Zν ] as the molar concentration, and C◦ = 1M. The activities of the hydronium

and hydroxide ions are given by a(H3O
+) = γH3O+ [H3O

+]/C◦ and a(OH−) = γOH− [OH−]/C◦,

with [H3O
+] and [OH−] as the molar concentrations of the hydronium and hydroxide ions.

The equilibrium state of a N -protic acid at analytical concentration Ca is mathematically

characterized by N + 3 equations: the N equilibrium constants, the water autoionization
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constant, and the balances of charge and mass

Kν =
a(Zν)a(H3O

+)

a(Zν−1)
, ν = 1, 2, . . . ,N , (4)

Kw = a(H3O
+)a(OH−), (5)

[H3O
+] = [OH−] +

N∑
ν=0

ν[Zν ], (6)

Ca =
N∑
ν=0

[Zν ], (7)

respectively. In the case of diluted solutions, it is valid to use the approximations a(Zν) ≈

[Zν ]/C
◦, a(H3O

+) ≈ [H3O
+]/C◦, and a(OH−) ≈ [OH−]/C◦. The use of the biochemical

standard state, C−◦ = 10−7C◦, to define the dimensionless quantities zν = [Zν ]/C
−◦ , x =

[H3O
+]/C−◦ , and y = [OH−]/C−◦ , allows to rewrite equations (4) to (7) as

kν =
zνx

zν−1

, ν = 1, 2, . . . ,N , (8)

1 = xy, (9)

x = y +
N∑
ν=0

νzν , (10)

ca =
N∑
ν=0

zν , (11)

with ca = Ca/C
−◦ , kw = 1, and kν = 107Kν .

This N -protic acid has N distinguishable sites, each capable of being either occupied by

a proton or left unoccupied. In this context, the dissociation state Zν is characterized by

having N − ν occupied sites and ν unoccupied sites. The sites of HNB are in one-to-one

correspondence with the elements of the set SN = {1, 2, . . . ,N}.

There are two distinct deprotonation schemes: consecutive and non-consecutive. In

consecutive or sequential acid dissociation, protons on the occupied sites are released in

a specific, predetermined order. Formally, this order is given by an enumeration of SN ,
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E = (ν1, ν2, . . . , νN), where

ν1 ∈ SN ,

ν2 ∈ SN − {ν1},

ν3 ∈ SN − {ν1, ν2}, . . . ,

νn ∈ SN − {ν1, ν2, . . . , νn−1}, . . . ,

νN ∈ SN − {ν1, ν2, . . . , νN−1}.

In the consecutive dissociation there is a one-to-one mapping between the states Zµ and the

sets SN−{ν1, ν2, . . . , νµ}, with Z0 mapped to SN , Z1 mapped to SN−{ν1}, ..., ZN−1 mapped

to SN − {ν1, ν2, . . . , νN−1}, and ZN mapped to ∅.

Nonconsecutive dissociation of polyprotic acids

On the other hand, in non-consecutive acid dissociation, the protons can separate independ-

ently instead of consecutively. Dissociation micro-states (DMS) are necessary to describe

the non-consecutive acid dissociation. In the non-consecutive dissociation, the dissociation

state Zν has
(
N
ν

)
= N !

(N−ν)!ν!
possible dissociation micro-states. these DMSs are given by the

subsets of SN with N − ν elements. The set of micro-states of Zν is given by

Mν = {T ∈ P(SN) : |T | = N − ν}, (12)

with P(SN) as the power set of SN , defined as:

P(SN) = {T : T ⊆ SN}. (13)

In simpler terms, Mν represents the collection of all subsets of SN with N − ν elements,

each corresponding to a unique DMS of Zν . The DMSs of Zν are given by Mµ with
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µ ∈ Mν . For example, the DS Z1 of a 3-protic acid has
(
3
1

)
= 3 DMSs Mµ, with µ ∈

M1 = {{1, 2}, {1, 3}, {2, 3}}. The fully protonated and fully deprotonated state Z0 and ZN

respectively, have only one DMS each MSN
and M∅, respectively. An N -protic acid has a

total of 2N DMSs.

The molar concentration of the deprotonation state Zν , [Zν ], is related to the molar

concentrations of its deprotonation microstates, [Mν ], by

[Zν ] =
∑
µ∈Mν

[Mµ], ν ∈ SN . (14)

The micro-equilibria of deprotonation and protonation (DME and PME, respectively)

between the DMSs Mµ and Mλ are possible when the absolute difference between the sets

µ and λ is 1, and either µ ⊊ λ or λ ⊊ µ. These micro-equilibria are given by the chemical

equations

Mµ +H2O −−⇀↽−− Mλ +H3O
+, (15)

Mλ +H2O −−⇀↽−− Mµ +OH−, (16)

and the micro-equilibrium constants

Kµλ =
a(Mλ)a(H3O

+)

a(Mµ)
, (17)

Kλµ =
a(Mµ)a(OH−)

a(Mλ)
. (18)

The activities of Mµ, Mλ, H3O
+ and OH−, are given by

a(Mµ) = γµ[Mµ]/C
◦, a(Mλ) = γλ[Mλ]/C

◦,

a(H3O
+) = γH3O+ [H3O

+]/C◦, and a(OH−) = γOH− [OH−]/C◦,

respectively, with C◦ = 1M as the standard state, and γµ, γλ, γH3O+ , and γOH− , as the
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activity coefficients. The addition of the chemical equations (15) and (16) gives the water

autoionization equilibrium

2H2O −−⇀↽−− H3O
+ +OH−, (19)

which has equilibrium constant

Kw = KµλKλµ

= a(H3O
+)a(OH−).

(20)

Although the number of micro-equilibrium constants between the DMSs of Zν−1 and Zν is

given by 2
(

N
ν−1

)(
N
ν

)
, only 2

(
N
ν

)
(N − ν) are chemically related. The set of chemically related

DME constants is given by

K = {Kµλ : µ ⊊ λ or λ ⊊ µ, abs(|µ| − |λ|) = 1}. (21)

The total number of DMEs and PMEs for a N -protic acid is 2NN . The 3-protic acid can be

used as an example. The DMS of Z1 and Z2 are given by Mµ and Mλ respectively, with µ ∈M1

and λ ∈ M2 as elements of the sets M1 = {{2, 3}, {1, 3}, {1, 2}} and M2 = {{1}, {2}, {3}},

respectively. Since {3} ̸⊂ {1, 2}, or {1, 2} ̸⊂ {3}, there are not DME between the DMSs

{1, 2} of Z1 and {3} of Z2. On the other hand, since {1} ⊊ {1, 2}, and abs (|{1, 2}| − |{1}|) =

1, there are DME and PME between {1, 2} and {1}. The total number of DME and PME

for the 3-protic acid is 3× 23 = 24.

In the case of aqueous dilute solutions all the activity coefficients are approximately one,

and it is justified to use the approximations a(Mµ) ≈ [Mµ] /C
◦, aOH− ≈ [OH−]/C◦, and

aH3O+ ≈ [H3O
+]/C◦. The use of the biochemical standard state C−◦ = 10−7C◦, allows to
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write the micro-equilibrium constants (17), (18), and (20) as

kµλ =
xmλ

mµ

, (22)

kλµ =
ymµ

mλ

, (23)

1 = xy, (24)

respectively. It can be shown that kµλ = 107Kµλ and kλµ = 107Kλµ.

Relation between dissociation equilibria and micro-equilibria

There is a simple relation between the deprotonation equilibrium constants kν , with ν ∈ SN ,

and the deprotonation micro-equilibrium constants, kµλ, with µ ∈ Mν−1, and λ ∈ Mν . The

deprotonation equilibrium constant kν ,

kν =
xzν
zν−1

, ν ∈ SN , (25)

can be written in terms of the deprotonation micro-states

kν =
x
∑

mλ∈Mν mλ∑
mµ∈Mν−1mµ

. (26)

The reciprocal of kν is given by

1

kν
=

∑
µ∈Mν−1

mµ

x
∑

λ∈Mν
mλ

=
∑

µ∈Mν−1

(∑
λ∈Mν

xmλ

mµ

)−1

=
∑

µ∈Mν−1

(∑
λ∈Mν

kµλ

)−1

.

(27)
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A simpler relation between the equilibrium constants kν and the micro-equilibrium constants

can be obtained by dividing numerator and denominator of the right hand side of equation

(26) by mµ′ with µ′ ∈Mν−1,

kν =
x
∑

λ∈Mν
mλ/mµ′∑

µ∈Mν−1
mµ/mµ′

=

∑
λ∈Mν

kµ′λ∑
µ∈Mν−1

τµ′µ
,

(28)

with τµ′µ = mµ/mµ′ as the equilibrium constant for the tautomerization (isomerization)

between the protonation micro-states Mµ and Mµ′ of Zν−1,

Mµ′ −−⇀↽−− Mµ, µ,µ′ ∈Mν−1. (29)

Equation (28) can be written in terms of the molar fractions xµ = mµ/zν for µ ∈Mν ,

kν = xµ

∑
λ∈Mν

kµλ, µ ∈Mν−1. (30)

It is easy to verify that the micro-equilibrium and tautomerization constants are related by:

kµ′λ = τµ′µkµλ, (31)

kµλ′ = kµλτλλ′ . (32)

An expression for the micro-equilibrium constants, in terms of the equilibrium constants

and the microscopic molar fractions, can be obtained from the general definition of the

micro-dissociation constants, kµλ = xmλ/mµ, for µ ∈ Mν−1 and λ ∈ Mν . Multiplying the

numerator of this expression by the unity 1 = zν/zν , and the denominator by the unity

1 = zν−1/zν−1, gives after rearranging terms

kµλ =
xλ

xµ

kν , µ ∈Mν−1,λ ∈Mν . (33)
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This expression has been used previously, for the diprotic acid, in order to get the micro-

equilibrium constants from the equilibrium constants and measurements of 13C NMR [52].

Graph-Theory description of polyprotic acids micro-dissociation

In graph theory, a graph G = (V ,E) is a structure built from a set of vertices V , and a set

of edges, E. The elements of E are the relations between pairs of vertices. Directed and

undirected edges indicate one-way and two-way relationships between two vertices, respect-

ively. Directed edges are written in parenthesis meanwhile undirected edges are written in

curly brackets.

The dissociation of a N -protic acid can be represented by a graph GN = (VN ,EN), with

VN = {Mµ : µ ∈ P(SN)}, and EN given by the set EN = Pk(SN) ∪ Pτ (SN) with

Pk(SN) = {{Mµ,Mλ},µ ∈ P(SN),µ ∈ P(SN) : µ ⊊ λ or λ ⊊ µ, abs(|µ| − |λ|) = 1}, (34)

Pτ (SN) = {{Mµ,Mλ},µ ∈ P(SN),µ ∈ P(SN) : |µ| = |λ| = |µ ∩ λ|+ 1}, (35)

where Pk is the set of pairs of DMSs related by micro-equilibrium constants, and Pτ is the

set of pairs of DMSs related by tautomerization constants.

The microequilibrium and tautomerization constants of acid dissociation always occur in

pairs. For every kµλ and τµµ′ , there exist kλµ and τµ′µ, respectively. This pairing of constants

allows undirected edges to represent pairs of equilibrium and tautomerization constants in

the graph GN .

A graph automorphism of GN is a permutation, denoted σ, of the set of vertices, VN , that

maintains the edge-vertex connectivity of GN . Because the compositions of two permutations

is also a permutation, the composition of two graph automorphisms must likewise be a

graph automorphism. The set of automorphism of GN , equipped with the composition

of automorphisms, constitutes a group known as the graph automorophism group of GN ,

denoted aut(GN).
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Relation between equilibrium and micro-equilibrium constants for

diprotic and triprotic acids

In the case of a diprotic acid the concentration vectors of dissociation and micro-dissociation

states are z⊺ = {z0, z1, z2}, and

m⊺ = {m{1,2},m{2},m{1},m∅}

= {m12,m2,m1,m0},
(36)

respectively. The second line of the equation defining m was obtained by applying the

assignation rules ∅ → 0, {1} → 1, {2} → 2, and {1, 2} → 12. In these terms, the

vectors of dissociation and micro-dissociation constants are given by k⊺ = {k1, k2}, and

k̃⊺ = {k12,1, k12,2, k1,0, k2,0}.

The use of equations (28), (31) and (32) produces the linear system of equations

k1 = k12,1 + k12,2, (37)

k2(1 + τ) = k12,1, (38)

k2(1 + τ) = τk12,2, (39)

0 = τk10 − k20 (40)

0 = k12,1 − τk12,2, (41)

where τ = τ12. It is easy to verify that the combined use of these equations gives the disso-

ciation constants, k, in terms of the micro-dissociation constants, k̃. The first dissociation

constant is already given by equation (37), k1 = k12,1+k12,2; The second dissociation constant

is obtained by substitution of τ from equation (41) in equation (38) to obtain

k2 =
k12,1k12,2

k12,1 + k12,2
. (42)
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The micro-dissociation constants, k̃, in terms of k and τ are given by

k12,1 = x1k1,

k12,2 = x2k1,

k1,0 = x−1
1 k2,

k2,0 = x−1
2 k2,

(43)

with x1 = m1/z1 and x2 = m2/z1.

The dissociation of the triprotic acid is a more interesting example. The concentration

vector of dissociation states is z = {z0, z1, z2}. The concentration vector of the micro-

dissociation states is

m⊺ = {mS3 ,m23,m13,m12,m3,m2,m1,m0}. (44)

The vectors of dissociation constants k, and micro-dissociation constants k̃, are given by

k⊺ = {k1, k2, k3} and

k̃⊺ = {kS3,23, kS3,13, kS3,12, k23,2, k23,3, k13,1, k13,3, k12,1, k12,2,

k30, k20, k10}.
(45)

There are three possible tautomerizations between the dissociation micro-statesM2 = {1, 2, 3}.

The use of equations (31) and (32) gives

τ12 =
k20
k10

=
k12,1
k12,2

, (46)

τ13 =
k30
k10

=
k13,1
k13,1

, (47)

τ23 =
k30
k20

=
k23,2
k23,3

. (48)

In the same way, there are three tautomerizations between the dissociation micro-states
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M1 = {12, 13, 23}

τ12,13 =
k13,1
k12,1

=
kS3,12

kS3,13

, (49)

τ12,23 =
k23,2
k12,2

=
kS3,12

kS3,23

, (50)

τ13,23 =
k23,3
k13,3

=
kS3,13

kS3,23

. (51)

The tautomerization constants are related between them by

τ13 = τ12τ23, (52)

τ12,23 = τ12,13τ13,23. (53)

The use of equation (28) with ν = 1 gives first dissociation constant of the triprotic acid

k1 = kS3,1 + kS3,2 + kS3,3. Equation (28) with ν = 2 gives three equations for k2, which are

all equivalent to

(1 + τ12 + τ13)k2 = k12,1 + k13,1 + τ12k23,2. (54)

The use of the tautomerizations (46)-(48), in terms of the dissociation micro-states of Z1,

gives

k2 =
k13,3 (k12,1k12,2 + k13,1k12,2 + k12,1k23,2)

k13,1k12,2 + k12,1k13,3 + k12,2k13,3
. (55)

This is only one of three possible (equivalent) equations for k2. The third dissociation

constant of the triprotic acid gives also three equations equivalent to

(1 + τ12,13 + τ12,23)k3 = kS3,12. (56)

This equation gives kS3,12 = x−1
12 k3. The use of the tautomerizations (49)-(51), in terms of
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the dissociation micro-states of S2, in equation (56) gives

k3 =
kS3,12kS3,13kS3,23

kS3,12kS3,13 + kS3,12kS3,23 + kS3,13kS3,23

. (57)

Again, this is only one of three possible (equivalent) equations for k3.

The use of the tautomerizations (47) and(48) in k1 = kS3,1 + ks3,2 + kS3,3 gives

kS3,1 =
k1

1 + τ12 + τ13
= x1k1. (58)

The constants kS3,2 and kS3,3 are obtained from equations (46) and (47)

kS3,2 = τ12kS3,1 = x2k1, (59)

kS3,3 = τ13kS3,1 = x3k1. (60)

The constant k12,1 is obtained from equation (54) and the tautomerizations. The substi-

tutions k13,1 = τ12,13k12,1 and τ12k23,2 = τ12,23k12,1 in (54) gives

k12,1 =
1 + τ12 + τ13

1 + τ12,13 + τ12,23
k2 =

x12

x1

k2. (61)

The other constants of k̃ are obtained from k12,1 and the tautomerizations

k13,1 = τ12,13k12,1 =
x13

x1

k2, (62)

k12,2 =
k12,1
τ12

=
x12

x2

k2, (63)

k23,2 =
τ12,23
τ12

k12,1 =
x23

x2

k2, (64)

k13,3 =
τ12,13
τ13

k12,1 =
x13

x3

k2, (65)

k23,3 =
τ12,23
τ13

k12,1 =
x23

x3

k2. (66)
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Finally the constants kS3,µ, µ ∈M2, are given by equation (56) and

kS3,13 =
1

τ12,13
kS3,12 = x−1

13 k3, (67)

kS3,23 =
1

τ12,23
kS3,12 = x−1

23 k3. (68)

Graph automorphism groups of the dissociation of polyprotic acids

M1 M0

(a)

M12

M2

M1

M0

(b)

MS3

M23

M13

M12

M3

M2

M1

M0

(c)

Figure 1: Dissociation graphs of some polyprotic acids. (a) Monoprotic acid; (b) Diprotic
acid; (c) Triprotic acid. Red, green and blue edges represent the deprotonation/protonation
of protons (1), (2), and (3), respectively, gray edges represent tautomerizations. Dashed
edges are used to facilitate the visualization of G3.

In the case of a monoprotic acid, the sets V1 and E1 are V1 = {M1,M0} and E1 =

{{M1,M0}}. The graph G1 = (V1,E1) is depicted in figure 1(a). This graph is known as the

complete graph of order two, denoted as K2, where all vertices are connected by edges. The

acid-base permutation

σ10 = (M1M0)(H3O
+OH−), (69)

exchanges M1 with M0, and H3O
+ with OH−. In terms of concentrations, σ10 exchanges

m1 with m0, and x with y. The effect of σ10 on the micro-equilibrium constants is given by

16



σ10(k10) = k01 and σ10(k01) = k10. The graph G1 is shown to be preserved under the action of

σ10 in figure 2. This means σ10 maps G1 onto itself without loosing edge connectivity, making

σ10 a graph automorphism of G1. The identity permutation e = (M1)(M0)(H3O
+)(OH−) is

also a graph automorphism ofG1. Under the operation of composition, the graph automorph-

isms e and σ10 generate the graph automorphism group of G1, denoted as aut(G1) = ⟨σ10⟩.

The permutation σ10 is an involution, meaning σ10 = σ−1
10 , hence σ2

10 = e establishes a

condition on the generators of the group. The group presentation is given as

aut(G1) =
〈
σ10|σ2

10 = e
〉
, (70)

which specifies that the cyclic group of order two, C2, represents the monoprotic acid disso-

ciation.

M1

M0

M0

M1

σ10

σ10

Figure 2: Effect of the permutations σ10 on the graph G1.

The dissociation of a diprotic acid is represented by the graph G2 = (V2,E2) with

V2 = {M12,M2,M1,M0}, (71)

E2 = {{M12,M2}, {M12,M1}, {M1,M2}, {M2,M0}, {M1,M0}}. (72)

The graph G2 = (V2,E2) of the diprotic acid micro-dissociations is depicted in figure 1(b).

In this graph, red and green edges represent two types of micro-dissociations. The red edges

correspond to the dissociations of protons occupying site 1, while the green edges correspond

to protons at site 2. The gray edge represents the tautomerization between the DMSs M1

and M2. The graph G2 of the diprotic acid micro-dissociations is a complete tripartite graph,

G2 = K1,1,2, also known as the diamond graph. The acid-base permutation σ12,0, and the
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tautomerization permutation σ21 are defined as:

σ12,0 = (M12M0)(H3O
+OH−), (73)

σ21 = (M2M1)(H3O
+)(OH−). (74)

These permutations preserve the edge-vertex connectivity of G2, as shown in figure 3. Under

the composition operation, the graph automorphisms σ12,0, σ21, and the identity e, form the

graph automorphism group of G2, denoted aut(G2) = ⟨σ12,0,σ21⟩. Since the permutations

σ12,0 and σ21 are involutions (self-inverses), the graph automorphism group of G2 is given by

aut(G2) =
〈
σ12,0,σ21 |σ2

12,0 = σ2
21 = (σ12,0σ21)

2 = e
〉
. (75)

This is known as Klein’s 4-group, or C2 × C2. In figure 3, it is evident that the product

ρ = σ12,0σ21 results in a counterclockwise rotation of G2 by π radians. Since C2 and S2 are

isomorphic (C2 ≃ S2), the automorphism group of the graph representing the diprotic acid

is also expressed as aut(G2) = C2 × S2.

M12

M2

M1

M0

M0

M2

M1

M12

M12

M1

M2

M0

M0

M1

M2

M12

σ12,0

σ21

σ12,0

σ21

Figure 3: Effect of the permutations σ12,0 and σ21 on the graph G2.
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The triprotic acid dissociation is characterized by the sets V3 and E3 as follows:

V3 = {Mµ : µ ∈ P(S3)}, (76)

E3 = Pk(S3) ∪ Pτ (S3), (77)

respectively. The graph G3 = (V3,E3) is shown in figure 1(c). This graph displays three

types of edges representing deprotonations: proton 1 in red, proton 2 in green, and proton 3

in blue. Tautomerizations are represented by gray edges. There are three permutations that

serve as generators of the graph automorphism group of G3:

σd = σ12,23σ1,2

= (M12,M23)(M1,M2), (78)

σ′
d = σ12,13σ2,3

= (M12,M13)(M2,M3), (79)

C2 = σS3,0σ12,1σ13,2σ23,3

= (MS3 ,M0)(M12,M13)(M13,M2)(M23,M3)(H3O
+OH−), (80)

The presentation of this group is given by

aut(G3) =
〈
σd,σ

′
d,C2 |σ2

v = (σ′
v)

2 = C2
2 = e

〉
. (81)

The effect of these permutations on G3 is depicted in Figure 4. The permutations (78)-(80)

can be interpreted as symmetry operations:

• The tautomerization σd acts as a reflection on the plane containing MS3 , M12, M3, and

M0.

• The tautomerization σ′
d is a reflection on the plane containing MS3 , M23, M1, and M0.

• The acid-base rotation C2 is a rotation about the axis that goes from the center of the
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graph through the midpoint between the DMSs M23 and M3.

MS3

M23

M13

M12

M3

M2

M1

M0

MS3

M23

M12

M13

M2

M3

M1

M0

MS3

M13

M23

M12

M3

M1

M2

M0

M0

M3

M2

M1

M23

M13

M12

MS3

σ12,13σ2,3

σ13,23σ1,2

σ
S
3 ,0 σ

12,1 σ
13,2 σ

23,3

Figure 4: Effect of the permutations σ13,23σ1,2, σ12,13σ2,3, and σS3,0σ12,1σ13,2σ23,3, on the graph
G3.

Other graph automorphisms of G3 are

σ′′
d = (M12,M23)(M1,M3), (82)

C3 = (M12,M13,M23)(M1,M3,M2), (83)

C2
3 = (M12,M23,M13)(M1,M2,M3), (84)

C ′
2 = (M0,MS3)(M12,M2)(M13,M3)(M23,M1)(H3O

+OH−), (85)

C ′′
2 = (M0,MS3)(M12,M3)(M13,M1)(M23,M2)(H3O

+OH−), (86)

i = (M0,MS3)(M12,M3)(M13,M2)(M23,M1)(H3O
+OH−), (87)

S6 = (M0,MS3)(M12,M1,M13,M3,M23,M2)(H3O
+OH−), (88)

S ′
6 = (M0,MS3)(M12,M2,M23,M3,M13,M1)(H3O

+OH−). (89)

The graph automorphisms (82)-(89) can be obtained by composition of the generators σd,
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σ′
d, and C2. A simple inspection gives

C3 = σdσ
′
d, (90)

C2
3 = σ′

dσd, (91)

σ′′
d = C3σd = C2

3σ
′
d, (92)

S6 = C2σ
′
d = C ′

2σd, (93)

S ′
6 = C2σd, (94)

C ′′
2 = iσd = S ′

6σ
′
d, (95)

i = C ′
2σ

′
d. (96)

e

σ′
d

σd C2

C3

σ′′
d

C2
3

S6

C′
2

i

C′′
2

S′
6

Figure 5: Cayley graph for the 3-protic acid dissociation. Red, green and blue edges represent
the action of the generators σd, σ

′
d, and C2, respectively.

In these compositions the product is taken from left to right. There are other compositions

not shown. A global view of the group aut(G3) is given by the Cayley graph shown in figure

5. This graph shows two hexagonal cycles, both generated by σd and σ′
d, and connected by

blue edges. The inner and outer hexagons are groups by themselves, both generated by σd

and σ′
d. This is the condition of the dihedral group of order 6, D3. The change of generators

from σd and σ′
d to σd and C3 = σdσ

′
d gives the symmetric group S3, which is isomorphic

to D3. The 12 graph automorphisms given by the permutations e and (78)–(89) are the
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elements of the group aut(G3) = C2×S3, which is isomorphic to the abstract dihedral group

D6 and the antiprismatic 3D point group D3d (Schoenflies’ notation).

The dissociation of the 4-protic acid is represented by a graph G4 with aut(G4) = C2 ×

S4, a group of order 48. In general, an N -protic acid will have a graph GN with graph

automorphism group aut(GN) = C2 × SN which has order 2N !, and it is the direct product

of the cyclic group C2 and the symmetric group SN .

Concluding remarks

The description of the micro-dissociation of an N -protic acid in terms of set theory is utilized

to derive mathematical relations between equilibrium and micro-equilibrium dissociation con-

stants. These mathematical relations are more convenient to use compared to the formulas

based on indexation provided by Hill [51]. The advantages of our formalism are demon-

strated by deriving equations that relate the equilibrium and micro-equilibrium constants of

diprotic and triprotic acids.

Graph theory has been employed to represent and classify the micro-dissociation equi-

librium of polyprotic acids as graphs, denoted as GN , with the dissociation micro-states as

vertices and the pairs of vertices connected by micro-dissociation constants as edges. Tau-

tomerizations and acid-base reactions are treated as permutations on the vertex set of the

polyprotic acid graph. It is shown that these permutation are graph automorphisms, and

the composition of two of these permutations is also a graph automorphism. The set of

automorphisms, endowed with composition, forms the automorphism group of the graph

GN . The generators of these groups were completely identified for monoprotic, diprotic and

triprotic acids. In the case of monoprotic acids the graph automorphism group is given by

the cyclic group C2. The analysis of the dissociation of a diprotic acid reveals the direct

product C2×C2. Finally, the triprotic acid micro-dissociation of triprotic acids is represented

by the direct product of the cyclic group C2 and the symmetric groupS3, denoted as C2×S3.
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The Cayley graph for triprotic acid illustrates how the three generators are sufficient to clas-

sify the micro-dissociation of these acids. It is shown that for an N -protic acid the direct

product C2× SN is the graph automorphism group. The formalism and results presented in

this paper enhance and broaden our understanding acid-base equilibrium.
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(34) Randić, M. Aromaticity of Polycyclic Conjugated Hydrocarbons. Chemical Reviews 2003, 103, 3449–

3606, PMID: 12964878.

(35) Tratch, S.; Zefirov, N. Symmetry specified enumeration of substituted derivatives: an easy solution to

the complex problem. Russ. Chem. Bull. 2008, 57, 235–252.

(36) Petrucci, R.; Herring, F.; Madura, J.; Bissonnette, C. Petrucci’s General Chemistry: Modern Principles

and Applications, eBook ; Pearson Education, 2023.

(37) Atkins, P.; Jones, L. Chemical Principles; W. H. Freeman, 2008.

(38) Harris, D.; Lucy, C. Quantitative Chemical Analysis, 10th ed.; W. H. Freeman, 2019.

(39) Skoog, D. A.; West, D. M.; Holler, F. J.; Crouch, S. R. Fundamentals of Analytical Chemistry, 10th

ed.; Cengage, 2021.

(40) Denbigh, K. G. The Principles of Chemical Equilibrium: With Applications in Chemistry and Chemical

Engineering, 4th ed.; Cambridge University Press, 1981.

(41) Stumm, W.; Morgan, J. Aquatic Chemistry: Chemical Equilibria and Rates in Natural Waters; En-

vironmental Science and Technology: A Wiley-Interscience Series of Textsand Monographs; Wiley,

2012.

26



(42) Adams, E. Q. Relations Between the Constants of Dibasic Acids and of Amphoteric Electorolytes.

Journal of the American Chemical Society 1916, 38, 1503–1510.

(43) Mchedlov-Petrossyan, N. Polyprotic Acids in Solution: is the Inverse of the Constants of Stepwise

Dissociation Possible? Ukrainian Chemistry Journal 2019, 85, 3–45.

(44) Yatsimirskii, K. B.; Chekman, I. S.; Budarin, L. I.; Romanenko, É. D.; Frantsuzova, S. B. NMR Spectra
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