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Abstract

The chalcogenide perovskite BaZrS3 has attracted much attention as a promising solar ab-

sorber for thin-film photovoltaics. Here, we use first-principles calculations to evaluate its

carrier transport and defect properties. We find that BaZrS3 has a phonon-limited electron

mobility of 37 cm2/Vs comparable to that in halide perovskites but lower hole mobility of 11

cm2/Vs. The defect computations indicate that BaZrS3 is intrinsically n-type due to shallow

sulfur vacancies, but that strong compensation by sulfur vacancies will prevent attempts to

make it p-type. We also establish that BaZrS3 is a defect-tolerant absorber with few low

formation energy, deep intrinsic defects. Among the deep defects, sulfur interstitials are the
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strongest nonradiative recombination centers which in sulfur-rich conditions would limit the

carrier lifetime to 10 ns. Our work highlights the material’s intrinsic limitations in carrier

mobility and suggests suppressing the formation of sulfur interstitials to reach long carrier

lifetime.

Introduction

Lead halide perovskites have revolutionized the field of photovoltaics (PV) by opening a

promising path to earth-abundant, easily processable, and high-efficiency thin-film technolo-

gies.1,2 The exceptional PV performance of halide perovskites is however shadowed by their

poor stability.3 Structural analogy has motivated the search for alternative solar absorbers

forming in the perovskite structure but in chemistries that could be more stable.4–13 The

chalcogenide perovskites ABX3 (A=Ca, Sr, Ba, B=Ti, Zr, and X=S, Se) have emerged

in this context with their first suggestion as solar absorbers coming from first-principles

studies4 followed by experimental synthesis and characterization especially of BaZrS3.
14–18

BaZrS3 shows excellent stability in ambient conditions and exhibits a ∼1.8 eV direct band

gap which can be tuned to 1.5 eV by alloying with BaTiS3 or BaZrSe3.
14,16–23 Significant

efforts have been dedicated to growing high-quality thin films of BaZrS3 and its alloys, using

a range of techniques such as pulsed laser deposition,24–26 sputtering,20,27,28 molecular beam

epitaxy,29,30 and solution-based synthesis.31–33 Very recently, a proof-of-concept BaZrS3 so-

lar cell has been reported, demonstrating an efficiency of 0.11%.34 Interestingly, BaZrS3 also

stands out as a top candidate in a few high-throughput computational screening of thin-film

solar absorbers.10,35–37

In this letter, we use first-principles calculations to clarify the carrier transport and

defect properties in BaZrS3. We compute the phonon-limited carrier mobility showing that

BaZrS3 has intrinsically low hole mobility. We also perform state-of-the-art hybrid-functional

defect calculations. We show that BaZrS3 is intrinsically n-type, and that p-type doping of
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BaZrS3 will be very difficult due to strong compensation by intrinsic donor defects. While

BaZrS3 shows high defect tolerance with few low formation energy, deep defects, the sulfur

interstitial (Si) is identified as the most worrisome nonradiative recombination center. Our

results suggest pathways regarding growth condition optimization and device design towards

high-performance BaZrS3 absorbers.

Results

Electronic band structure and carrier transport
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Figure 1. (a) Crystal structure of BaZrS3. (b) HSE06-calculated electronic band structure
and (partial) density of states (DOS) of BaZrS3.

BaZrS3 forms in an orthorhombic Pnma perovskite structure (see Figure 1a). Our calcu-

lated band structure using the Heyd-Scuseria-Ernzerhof hybrid functional (HSE06)38 shows

a direct band gap of 1.81 eV at the Γ point (Figure 1b), in agreement with previous calcula-

tions and experiment.4,10,16–22,39 Combining computed electronic and phonon properties, we

find a phonon-limited carrier mobility of 11 cm2/Vs for holes and 37 cm2/Vs for electrons,

with the carrier scattering mechanism dominated by polar optical phonons (see the sup-

porting information for details). These values are upper bounds as realistic polycrystalline
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films will have additional scatterings from grain boundaries, impurities, and others. They

are much lower than those calculated for conventional thin-film inorganic solar absorbers

(such as CdTe40,41 and Cu2ZnSnS4
42). The calculated hole mobility of BaZrS3 is also lower

than for the halide perovskite CH3NH3PbI3 (11 vs 47 cm2/Vs), yet these two materials have

comparable calculated electron mobility.43 Our results are consistent with experiments on

BaZrS3 thin films which indicate low carrier mobilities (∼2 cm2/Vs for holes and ∼10–20

cm2/Vs for electrons).24,25,44,45The measured low carrier mobility has been often attributed

to small grain size or impurity scattering.24,25 While these could be limiting factors in the

experiments, our results highlight that BaZrS3 has intrinsically low phonon-limited carrier

mobility, and that experimentally it is very unlikely to achieve mobilities higher than our

computed values. We note that Ye et al. reported a very high sum mobility (>100 cm2/Vs)

in BaZrS3 films based on time-resolved photoluminescence (TRPL) measurements but the

data suffer from reported very large uncertainty.46

The large difference between hole and electron mobilities directly comes from the elec-

tronic band structure (see Figure 1b). The lower conduction bands are much more dispersive

than the upper valence bands. As a result, the effective mass is found to be small for elec-

trons (0.3 m0) and relatively large for holes (0.9 m0). The fundamental difference in hole

effective mass and mobility between BaZrS3 and CH3NH3PbI3 comes from the different elec-

tronic character in the valence band. While the halide perovskite mixes anion and cation

orbitals leading to delocalized valence band,47 the sulfide shows a more ionic behavior with

the valence band being mainly of anion character (see Figure 1b).

Intrinsic point defects and doping

We have calculated all the intrinsic point defects in BaZrS3 including the vacancies (VBa,

VZr, VS), interstitials (Bai, Zri, Si), and antisites (BaZr, ZrBa, BaS, SBa, ZrS, SZr). Our first-

principles calculations are all performed using the HSE06 hybrid functional and large 3×3×2

supercell (360 atoms) with proper charge correction and spin-polarization, which is different
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from previous first-principles calculations.16,48 We provide in the supporting information

the details of our methodology and a comparison to previous calculations. We note that

some of the defects (e.g., Si) involve several configurations that are close in energy. In

the following, we report only results for the lowest energy configurations, while those for

metastable configurations can be found in Figure S2 of the supporting information.

a b

Figure 2. Formation energies of intrinsic point defects in BaZrS3 as a functional of Fermi
level, under (a) S-poor and (b) S-rich conditions. The Fermi level is referenced to the valence-
band maximum (VBM) of BaZrS3. The slopes of the formation-energy lines indicate defect
charge states, and the dots denote charge-state transition levels (see also Figure 3).

Figures 2 shows the formation energies of the intrinsic defects in BaZrS3 for both S-poor

and S-rich conditions. The defect charge-state transition levels are plotted in Figure 3. We

find that a series of shallow donor defects can form in BaZrS3. The VS is the dominant donor,

giving rise to two donor levels (+/0) and (2+/+) that are almost in resonance with the con-

duction band. Under S-poor conditions (Figure 2a), the VS has fairly low formation energy

and thus exists in high concentration. On the other hand, the acceptor defects, mainly VBa

and BaZr, have high formation energies. These indicate that S-poor BaZrS3 will be heavily

n-type doped by the VS donors. Under S-rich conditions (Figure 2b), the formation energy

of VS is increased, while the formation energies of the acceptor defects are reduced. Under

those conditions, the equilibrium Fermi level would be pinned close to the intersection of the

formation energies of VS and VZr (about 0.5 eV below the conduction band), indicative of
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a very weak n-type, almost intrinsic BaZrS3. Our results explain the experimental observa-

tion that as-grown BaZrS3 is intrinsically n-type with the electron concentration as high as

1019–1020 cm−3,24 and we attribute this doping to sulfur vacancies.

Figure 2 also indicates that it will be very difficult to achieve p-type BaZrS3. While VBa,

VZr, and BaZr are shallow acceptors, they are strongly compensated by the VS donors. Even

under the most favorable S-rich conditions, Fermi-level pinning energy for p-type doping49,50

is 0.6 eV above the VBM, caused by the VS whose formation energy drops first to zero when

the Fermi level is approaching the VBM (Figure 2b). In view of the high p-type pinning

limit, any extrinsic shallow acceptors will be strongly compensated, thus preventing p-type

doping. In the literature, p-type BaZrS3 has only been reported once with hole concentration

of ∼1018 cm−3.27 We note that this was achieved in a sample which is extremely Ba-deficient

(Ba/Zr ratio as low as ∼0.6), raising questions about possible secondary phases.

Figure 3. Defect charge-state transition levels ϵ(q/q′). Only the levels falling into the BaZrS3

band gap are shown. The red and blue bars denote acceptor and donor levels, respectively.

Next to doping, from Figures 2 and 3 we identify a few defects with deep transition

levels, including VZr (3−/4−), BaZr (−/2−), SBa (+/3−), SZr (0/2−), and Si (0/2+). Only

Si has sufficiently low formation energy to exist in significant concentration (when in S-rich
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conditions; see Table S4 for the calculated defect concentrations). Since defect-assisted non-

radiative recombination is one of the key processes that limit carrier lifetime and ultimately

solar cell performance,51–57 it is necessary to assess whether the Si is an efficient nonradiative

recombination center.

Nonradiative carrier capture by sulfur interstitials

We now compute the nonradiative capture coefficients of the Si. For nonradiative capture

by the Si, the relevant charge-state transitions are (2+/+) and (+/0), which are located at

0.35 and 1.37 eV above the VBM, respectively, as shown in Figure 4a. There are two capture

processes associated with the (+/0) level: C0
p for hole (p) capture and C+

n for electron (n)

capture, where the superscript denotes the initial charge state.58,59 Similarly, nonradiative

recombination via the (2+/+) level involves two capture processes: C+
p and C2+

n .

To illustrate the capture processes, Figure 4b shows the local atomic structures of the

Si in the three charge states: 0, +, and 2+. The local structures of S0
i and S+

i are similar

but differ from that of S2+
i . In the 0 and +1 charge states, the interstitial S forms distorted

tetrahedral bonds with two Ba, one Zr, and one S nearest neighbors. With the S0
i → S+

i

transition (i.e., capturing a hole, C0
p), another lattice S atom moves towards the interstitial

S. This lattice S atom and the interstitial S move further closer with the S+
i → S2+

i transition

(i.e., capturing another hole, C+
p ). As a result, the S2+

i forms a S trimer.

The configuration coordinate diagrams (CCDs) for the Si (+/0) and (2+/+) transitions

are shown in Figures 4c and 4d. Such diagrams map the potential energy surfaces (PESs)

of a defect in two adjacent charge states for a given transition as a function of a generalized

configuration coordinate (Q).60–62 We find that the Q displacement is larger for the (2+/+)

transition than for the (+/0) transition, reflecting the structural differences discussed above.

The CCDs indicate anharmonic atomic vibrations in the Si capture processes, which are

pronounced for those associated with the (2+/+) transition; see a comparison between the

anharmonic and harmonic PESs in Figures 4c, 4d and S3. Anharmonicity in the CCDs was
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Figure 4. (a) Formation energy of the sulfur interstitial (Si) versus Fermi level under S-rich
conditions. (b) Local atomic structures of the Si in the 0, +, and 2+ charge states. (c)–(d)
Configuration coordinate diagrams for the Si (0/+) and (+/2+) transitions. The intersection
of the PESs indicates the capture barriers. The gray dashed lines are a harmonic fit of the
PESs. (e) Temperature-dependent nonradiative capture coefficients of the Si.

widely found for nonradiative carrier capture in halide perovskites and other low-symmetry

semiconductors.59,63–66 The anharmonicity reduces the electron capture barrier of S2+
i but

increases the electron capture barrier of S+
i , compared to capture barriers in the harmonic

approximation. Both S0
i and S+

i have a negligibly small hole capture barrier. From the

capture barriers, the Si is expected to be an efficient nonradiative recombination center.

Figure 4e shows the calculated four capture coefficients versus temperature. The results

suggest fast electron capture by S2+
i with C2+

n of 6.6 × 10−6 cm3/s at room temperature

and slow electron capture by S+
i with C+

n of 1.95 × 10−10 cm3/s. The hole capture by S0
i

is fast with a room-temperature C0
p of 1.97 × 10−7 cm3/s, while it is slow for S+

i with C+
p

of 1.05 × 10−9 cm3/s. The latter is due to relatively small vibrational overlap between the

PESs for the S+
i → S2+

i transition. In low-doped or intrinsic BaZrS3, by balancing electron
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and hole capture under steady-state conditions, the total capture coefficient (Ctot) is given

by58,66

Ctot =
C+

n + C+
p

1 + C+
n

C0
p
+

C+
p

C2+
n

.

At room temperature, the Ctot is calculated to be 1.25 × 10−9 cm3/s. This is a moderate

value, limited by the relatively slow hole and electron capture by S+
i . It is slightly smaller

than the value (7×10−9 cm3/s) for the dominant recombination centers (iodine interstitials,

Ii) in CH3NH3PbI3 computed in a similar theoretical framework.59,63

Discussion

BaZrS3 shows higher electron mobility than hole mobility which would suggest using this

material as a p-type absorber layer as it is the diffusion length of minority carriers that mainly

controls the solar cell efficiency.67,68 Our analysis however shows that it will be unlikely to

make p-type BaZrS3. Using the intrinsically n-type doped BaZrS3 as an absorber layer

will lead to smaller minority-carrier diffusion lengths limited by the lower hole mobility and

also cause issues at the device level as discussed for other n-type absorbers.69,70 We thus

suggest it could be more viable to devise a p-i-n (or n-i-p) cell using BaZrS3 as the intrinsic

layer (lightly n-type doped), as in halide perovskite solar cells.71 In such a p-i-n device,

the carrier diffusion length is controlled by the ambipolar mobility (µa) which is estimated

to be 17 cm2/Vs using our calculated intrinsic electron and hole mobilities.72–74 Preparing

intrinsic BaZrS3 requires to reduce dramatically the concentration of VS donors which can

be achieved using S-rich growth conditions. However, S-rich conditions would enhance the

formation of the nonradiative recombination centers, the Si. It might then be beneficial to

reduce electron concentration by introducing an extrinsic shallow acceptor while keeping a

low sulfur chemical potential.

We estimate now a realistic upper bound of the Si density in high-temperature synthesized

BaZrS3 samples. Under S-rich conditions and assuming 1000 K growth of BaZrS3 and rapid
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quenching to room temperature, the Si density is estimated to be on the order of 1017 cm−3

(see Table S4). This high Si density leads to a nonradiative recombination coefficient (A)

on the order of 108 s−1 at room temperature; here A is defined as A = NdCtot, where Nd is

the defect density.59,75,76 As a result, the nonradiative lifetime (τ = 1/A) is on the order of

10 ns for S-rich conditions. Moving to less S-rich conditions will reduce the Si density and

increase the carrier lifetime. Our results are in reasonable quantitative agreement with the

carrier lifetime on the order of 50 ns measured by TRPL on BaZrS3 single-crystal samples.46

In comparison, the Ii in CH3NH3PbI3 has been found to lead to a much longer nonradiative

lifetime, on the order of 100 ns,59,63 based on the fact that the deep-level trap density in

solution-processed CH3NH3PbI3 samples is on the order of 1015 cm−3.77–79

Ye et al. estimated the solar cell figure of merit (FPV) of BaZrS3 based on experimental

data and using FPV = α∗LD, where α is the optical absorption coefficient and LD =
√

µakBT
e

τ

the carrier diffusion length.46,72,80–82 They found a FPV value of 2.1 using an absorption

coefficient of 4940 cm−1, nonradiative lifetime of 50 ns, and mobility of 146.2 cm2/Vs.46

Our computational results do not disagree with the lifetime but raise strong doubts on the

mobility value. Since our calculated mobility is an order of magnitude lower, we estimate

the FPV to be 0.33. Our results however indicate that if the Si concentration is lowered or

the interstitials are passivated in some way, higher carrier lifetime could be reached which

will boost the figure of merit.

In addition to intrinsic defects, we briefly mention that BaZrS3 is tolerant to oxygen im-

purities which could be present in high concentration in the samples prepared by sulfurization

of BaZrO3 precursor.24,83 We find that the oxygen-related point defects, including oxygen

interstitial (Oi) and O substitution on the S site (OS), are electrically inactive, i.e., they

are stable in the neutral charge state for almost the entire range of Fermi levels (see Figure

S4 of the supporting information), in agreement with previous experimental and theoretical

studies.83
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Conclusions

We evaluated carrier transport and defect properties in the chalcogenide perovskite solar

absorber BaZrS3. Our results show that BaZrS3 has a lower hole mobility than electron

mobility (11 vs 37 cm2/Vs). The mobility in this sulfide perovskite is lower and more

asymmetric (in terms of hole versus electron mobilities) than in lead halide perovskites. Our

defect computations indicate an intrinsic tendency for n-type doping due to the shallow

donor VS and that p-type doping is very unlikely to be achievable. We confirm that overall

BaZrS3 is a defect-tolerant absorber with few deep defects that could act as nonradiative

recombination centers. The Si is identified to be the most problematic deep center. Under

S-rich conditions, the carrier capture by the Si will lead to a carrier lifetime on the order of

10 ns. Our work strongly suggests that suppressing the formation of Si is critical for BaZrS3

to be a high-performance absorber.

Supporting Information Available

Full description of the computational methods. Supplementary Tables S1–S5, Figures S1–S4,

and Refs. S1–S29.
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