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Abstract—To scale quantum computers to useful levels, we
must build networks of quantum computational nodes that can
share entanglement for use in distributed forms of quantum
algorithms. In one proposed architecture, node-to-node entan-
glement is created when nodes emit photons entangled with
stationary memories, with the photons routed through a switched
interconnect to a shared pool of Bell state analyzers (BSAs).
Designs that optimize switching circuits will reduce loss and
crosstalk, raising entanglement rates and fidelity. We present
optimal designs for switched interconnects constrained to planar
layouts, appropriate for silicon waveguides and Mach-Zehnder
interferometer (MZI) 2× 2 switch points. The architectures for
the optimal designs are scalable and algorithmically structured
to pair any arbitrary inputs in a rearrangeable, non-blocking
way. For pairing N inputs, N(N − 2)/4 switches are required,
which is less than half of number of switches required for full
permutation switching networks. An efficient routing algorithm
is also presented for each architecture. These designs can also be
employed in reverse for entanglement generation using a shared
pool of entangled paired photon sources.

Index Terms—Quantum Network, Fault-Tolerant Quantum
Computing, Interconnect Networks, Switched-BSA, Planar Ar-
chitecture, Photonic Chip, Photonic Switch, Heralded Entangle-
ment Generation

I. INTRODUCTION

The importance of switching of signals has been under-
stood since the earliest days of telecommunications. The
mid-twentieth century saw advances in both the practice
and theory of switching for telephone networks, resulting in
multi-stage designs such as Clos, Benes̆, omega and butterfly
networks for electrical signals, coupling small switch units
together via discrete wires or coaxial cables [1]–[5]. Inspired
by these designs, and facing the need to scale up systems,
computer architects have built multicomputers, systems with
many independent processors and memory units connected via
interconnection networks [3], [6]–[8]. Multicomputer designs
for quantum computers, in which a number of independent
quantum computers with separate quantum registers and con-
trol systems are coupled via an interconnect network, are

This work was supported by JST [Moonshot R&D Program] Grant Numbers
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widely seen as a necessary architectural approach to achieving
scalable, fault-tolerant systems [9]–[21]. For multicomputer
quantum processing of transferring quantum state (teledata)
or performing teleportation of quantum gates (telegate), the
ability to generate Bell pairs and deliver them to arbitrary
quantum processing units is essential [22]–[24].

In addition to the architectural challenges of solving a large
scale quantum algorithm using a quantum multicomputer, the
cooperative nature of some distributed quantum algorithms
over a structured quantum network requires an efficient inter-
connect between quantum nodes in the network. To achieve
scalability, the unrealistic, abstract model with direct interfaces
between every pair of quantum computers or nodes in the
network must be replaced with a realistic switch interconnect
architecture [8], [25] to have reconfigurable paths between
arbitrary nodes. Switching interconnects are also indispensable
components of a number of quantum network testbed designs
that are planned to be deployed in the near future [26], [27],
paving the way to the eventual quantum Internet [28]–[32].

The primary service of quantum networks is the distribution
of entangled states, usually entangled pairs of qubits. This de-
parture from the packet-forwarding or circuit-switching nature
of classical networks presents a unique set of challenges for
the design of quantum switching networks, with the goal of
distributing pairs of entangled photons to the terminals.

One approach to quantum switching interconnects assumes
the availability of a shared pool of entangled photon-pair
sources (EPPS Pool) as pictured in the left panel of Fig. 1. In
this architecture, pairs of entangled photons are generated at
the EPPS nodes and routed by the optical switch to the appro-
priate end nodes. This demonstrates the fundamental differ-
ence between classical and quantum switching interconnects.
In the EPPS Pool architecture, initially neighboring inputs
(entangled photon pairs) must be switched to an arbitrary pair
of outputs. A non-planar optimal solution to this problem was
proposed by Drost et al. [33] for cases up to 10×10 quantum
switches. This solution was found via exhaustive search but
did not provide a good recursive design that would lead to
optimal and scalable quantum switching networks.
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Fig. 1: Deployment of switches in quantum networks for two possible scenarios: Left: Entanglement generation using shared
EPPSs for two nodes in the network. Right: Entanglement consumption for entanglement swapping using shared BSAs. As in
the lower portion of the figure, a switch can be composed of sets of 2 × 2 switching points. Because distributing Bell pairs
via EPPS (left) or performing entanglement swapping via BSA (right) are not location-dependent operations, we are free to
select any reachable EPPS or BSA, offering the opportunity to reduce switch complexity compared to classical full permutation
switches.

Optimal planar and scalable designs for full permutation
N ×N switching networks are over-designed for the problem
of pair matching as they require the ability to route all
N ! input-output combinations. The ability to route photons
to arbitrary BSAs, including arbitrary choice of the BSA
ports, is not required for successful execution of entanglement
swapping between desired pairs of photons.

We consider the inverse problem to the EPPS Pool archi-
tecture, shown in the right panel of Fig. 1. Photons originating
from the quantum network are inputs into the quantum switch,
which routes the desired pairs of photons to be incident onto
the same Bell State Analyzer (BSA). The pair of photons then
undergoes a Bell-state measurement, leading to entanglement
between the respective end nodes. The unique aspect of this
BSA Pool architecture is that which BSA is used to perform
entanglement swapping is irrelevant.

We propose three recursive designs for a planar N × N
quantum switch composed of a number of 2×2 switch points.
We obtain a lower bound for the number of switch points
required for the quantum switch to be rearrangeably non-
blocking, and demonstrate that all three of our designs saturate
this lower bound. For each design, we present an efficient
routing algorithm. We further analyze the depth of the three
designs, and the average number of switch points that a photon
traverses in order to better understand their loss properties.
Finally, we compare our planar designs with existing pla-
nar [34] and non-planar solutions for quantum [33] as well as

classical switches [4], [5], and demonstrate favourable scaling
properties of our designs.

II. PRELIMINARIES

We begin by describing the basics of optical switching net-
works and how quantum networks differ from classical ones.
We then proceed to summarize fabrication factors that place
constraints on our design. Finally, we discuss the assumptions
used in this work before ending this section with the problem
statement.

A. Classical and quantum optical switching networks

An optical switching network has a number of important
characteristics that should be considered while designing a
switching configuration:

• Size: the number of input and output ports
• Blocking/non-blocking: whether the network can handle

all possible input/output combinations
• Switching time: the reconfiguration time for the network
• Propagation delay: the time needed for photons to cross

the network
• Insertion loss: the probability of losing photons when

crossing the physical interface from the channel to the
switching element, typically involving a fiber/air bound-
ary or a fiber/chip interface (generally reported in dB)

• Switching loss: the probability of losing photons within
the switching element (generally reported in dB)
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• Crosstalk: the leakage of signal to undesired transmis-
sion paths (generally reported in dB)

• Redundancy: whether or not connectivity is degraded if
a switch point or link fails

• Physical dimensions: especially important when consid-
ering integration into the system

• Cost: often reported as per-port cost for large configura-
tions

The above list is largely common between classical and
quantum switching networks. In a classical network, within
reason, loss can be compensated for by increasing input signal
power. In the systems we are designing (Fig. 1), the networks
instead carry single photons.

Loss becomes the most critical metric and increases as the
photons pass through channels, interfaces and switch points.

Polarization may be critical in quantum networks (de-
pending on choice of qubit representation), and it can be
changed by each component. If the network itself can be built
with enough stability that its effect on polarization can be
characterized at infrequent intervals, network operation will be
more efficient [35]–[37]. Moreover, in physical design, self-
calibration can also be achieved by adding auxiliary optical
components to the photonic core [38], [39].

Most of the above characteristics depend on the choice of
physical fabrication technology, but from the architectural de-
sign point of view, the number of input ports, total number of
switches, and circuit depth indirectly affect propagation delay,
insertion loss, switching loss, crosstalk, physical dimensions
and cost.

B. Fabrication Considerations

For optical systems, we can build switching systems based
on photonic integrated circuit (PIC) technology [39], [40], or
via free-space propagation of light, e.g. using micro electro-
mechanical system (MEMS) switches [41], [42]. PICs have
relatively high loss per centimeter of waveguide, but have the
advantage of fewer fiber/air or fiber/chip interfaces that must
be crossed compared to designs that use discrete components
for each switch point. In this paper, we focus on integrated
circuits.

Photolithographic fabrication for waveguides [43] or pho-
tonic crystals [44], [45] results in planar layouts. Two wave-
guides can be run close to each other, resulting in 2×2 switch
units based on Mach-Zehnder interferometric techniques, al-
lowing two photons to be routed straight through or swapped
under programmatic control. Grids of these basic units take
sets of inputs from one edge of a chip and route them to a set
of outputs at the opposite edge of the chip.

Promising platforms for fabrication of integrated photonic
circuit such as silicon on insulator [43], silica on silicon [45]
and stoichiometric silicon nitride (Si3N4) [46] have different
fabrication complexity, photon loss and index contrast with
different supported wavelengths. These layouts are generally
kept planar due to the difficulty of routing a waveguide off
the substrate surface without significant loss [47]. Therefore,
we focus exclusively on planar switch designs in this work.

C. Assumptions

Following the discussion in Sec. II-A and Sec. II-B, we
now outline the assumptions used in the rest of the paper. The
switch waveguides carry individual photons generated from
quantum memories or entangled photon pair sources. BSAs
are located outside the switch, with each BSA being attached
to two neighboring output ports of the switch. Photons are to
be matched in pairs and routed to any available BSA (paired
egress). Use of the switch occurs in independent rounds, be-
tween which the switch may be reconfigured. The design must
be planar and non-blocking for all possible choices of input
pairings. Switch points are based on 2×2 switching elements
compatible with basic building blocks in photonic integrated
circuits. Photons are guided single-pass only, from one side of
the switch to another, and without any recirculation.

Issues of achieving indistinguishability between the input
photons, such as polarization maintenance, spectral properties
and time of arrival of the photons at the BSA, are out of the
scope for this work. Based on the above assumptions, we can
define the problem to be addressed.

D. Problem statement

Consider an N ×N switching network with N input ports,
with photons X0, X1, . . . XN−1 where photon Xi comes in
at the i-th port, and N output ports coupled to N/2 BSAs.
A paired egress request is represented as a tuple (Xi, Xj),
where 0 ≤ i < j < N , and we call the set of all required
pairings PLN/2 = {(Xi, Xj)}, where i and j each appear
exactly once.

We want to find a scalable, planar and rearrangeably non-
blocking topology for a switching network composed of base
2 × 2 switch points, and a corresponding efficient routing
algorithm capable of handling an arbitrary pair list PLN/2.
The routing algorithm must provide the state of every switch
point in the network, denoted by SW l

i ∈ {BAR, CROSS},
where SW l

i represent the switch at layer l between line i and
i+ 1,

and a permuted list of photons where the two photons at
index 2j and 2j + 1 of the list go into the same BSA (the
BSAj) after exiting the switch. The concept of a layer will
be made more precise when we introduce our designs.

III. OPTIMAL NUMBER OF SWITCH POINTS

In order to show that our proposed switching networks are
optimal, we consider the minimum number of switch points
required to pair all N input photons. It is known that a classical
planar N×N switching network requires at least N(N−1)/2
switch points to achieve all input-output permutations [34].

We adapt the techniques used in [34] for the case of paired-
egress switching networks. In order to obtain the minimum
number of switch points for the network to be rearrangeably
non-blocking, we consider the worst case scenario, where
always the two most distant input photons are required to
be paired together. The list of pairings is therefore given by
(X0, XN−1), (X1, XN−2), (X2, XN−3), and so on. Bringing
the input photons X0 and XN−1 together means that we must
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Fig. 2: (a) 4×4 non-blocking planar paired-egress switching interconnect. Changing the state of the 2×2 switch points achieves
all possible photon pairings. (b) A rearrangeable non-blocking 12 × 12 planar paired-egress switching interconnect. Switch
points of the same signify that they are added within the same network size and constitute a layer. Semicircles represent BSAs.

swap with all the other N − 2 input photons, requiring N − 2
switch points. This is true regardless of which BSA is assigned
to perform entanglement swapping on the input photons X0

and XN−1. A sample path and its required swaps are shown
in the lower portion of the right panel of Fig. 1. Bringing the
next pair of photons, (X1, XN−2), together requires N − 4
swaps. Continuing with this logic, the minimum number of
swaps, and therefore switch points, is given by

N/2−1∑
k=1

(N − 2k) = N(N − 2)/4. (1)

We observe that the minimum number of switch points for a
planar N×N rearrangeably non-blocking network with paired
egresses is less than half of that obtained in [34] for a classical
switching network.

IV. TRIANGULAR DESIGN

We begin with the simplest planar configuration for a rear-
rangeable non-blocking switching network with the minimum
number of switch points. From this point forward in the paper,
all designs are assumed to be paired egress, so we dispense
with the qualifier.

A. Architecture

The smallest non-trivial switching network is a 4×4 switch,
shown in Fig. 2(a), and requires at least 2 switch points. By
changing the state of the switch points, it is possible to achieve
all possible input photon pairings. For example, leaving both
switch points in the BAR state results in entanglement swap-
ping between input photon pairs (0,1) and (2,3). Turning both
of the switch points to CROSS state routes the input photons
in such a way that entanglement swapping is performed on
the pairs (1,2) and (0,3).

This 4 × 4 switch forms the basic building block for the
triangular switch architecture, as depicted in Fig. 2(b). For

N input photons, the switch is composed of N/2− 1 layers,
where layer k contains SW k = 2k switch points. The total
number of switch points is therefore given by

SWtriangular =

N/2−1∑
k=1

SW k = N(N − 2)/4. (2)

We see that the triangular architecture is optimal in terms
of the number of switch points. The switch is constructed
recursively by adding all switch points within a layer in a
cascaded fashion. For layer k, the switch points are arranged
in the following way,

SW k
0 → SW k

1 → . . .→ SW k
2k−1, (3)

where SW l
i represent the switch at layer l between line i and

i+ 1, as shown in Fig. 2(b) for the case of N = 12.

B. Routing

Showing that a switch design is rearrangeably non-blocking
amounts to demonstrating that given a pair list PLN/2, it is
always possible to find a configuration of all switch points that
permutes the input photon list such that all photon pairs are
adjacent to each other. The routing algorithm strongly depends
on the design of the switch. For the triangular design, it is
relatively straightforward and is presented in Algorithm 1.

The input to the routing algorithm is given by the input
photon list (X0, . . . , XN−1), and the pair list PLN/2. The
main strategy, similar to the bubble sort algorithm, is to start
with photon XN−1 since it is not incident onto any switch
points and cannot be routed. We find its partner Xj , such
that (Xj , XN−1) ∈ PLN/2, and configure the switch points
in layer N/2 − 1 in order for the pair to meet on lines
(N − 2, N − 1). This is achieved by setting all switch points
SW

N/2−1
k , for j ≤ k < N − 2 to the CROSS state. All other

switch points in the layer, SWN/2−1
k where 0 ≤ k < j, are

set to the BAR state. The effect of this configuration leaves
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the ordering of photons X0, . . . , Xj−1 unaffected, cascades
the photon Xj down to line N − 2, and shifts all remaining
photons up by one unit. This process is next repeated for the
next layer with input size N − 2, and the new list of photons
(X0, . . . , Xj−1, Xj+1, . . . , XN−2, Xj , XN−1) until the input
size becomes 2, reaching the trivial case.

For each layer, we traverse the photon list of length 2l+ 2
once and assign the switch states of 2l switches. Therefore,
the time complexity of this routing algorithm is O(N2).

Algorithm 1 Routing algorithm for the triangular design
Input: Photons: indexable list (X0, X1, X2, . . . , XN−1),

PL: set be paired {(Xi, Xj) | 0 ≤ i, j ≤ N − 1}
Output: permuted list: π((X0, X1, . . . , XN−1))

Set of switch states {SW l
j}

1: procedure ROUTING TRIANGLE(Photons, PL)
2: n← length of Photons ▷ initially n = N
3: SW ← ∅
4: while n > 2 do
5: l← n/2− 1 ▷ Current switch layer
6: i← index of Photons[n− 1]’s partner
7: SW ← SW + {SW l

j = Bar | 0 ≤ j < i}
8: SW ← SW + {SW l

j = Cross | i ≤ j ≤ n− 3}
9: Photons← move Photons[i] to pos. n− 2

10: n← n− 2

11: return Photons, SW

V. CHEVRON DESIGN

Our second switch design redistributes the switch points
in a more uniform manner. This change leads to a more
complicated, yet still efficient, routing algorithm.

A. Architecture

The chevron design is pictured in Fig. 3 for the case
of N = 12. Similar to the triangular design, the chevron
design consists of N/2 − 1 layers with layer k consisting of
SW k = 2k switch points, resulting in the optimal number
of total switch points N(N − 2)/4. However, the switch
points are laid out in a chevron, rather than a single diagonal
arrangement.

For layer l, with l being even, half of the switch points in
that layer are placed in the upper half of the chevron, with
the rest of the switch points being placed in the bottom half.
More precisely, the switch points in the upper half of a layer
are placed as follows,

SW l
N/2−l−1 → SW l

N/2−l → . . .→ SW l
N/2−2. (4)

The switch points in the bottom half of the layer mirror the
above arrangement,

SW l
N/2+l−1 → SW l

N/2+l−2 → . . .→ SW l
N/2. (5)

For odd layers, the placement of the switch points is similar
with the exception that the switch point SW l

N/2 is removed
and a new switch point SW l

N/2−1 is placed at the tip of the
chevron, as shown in Fig. 3.

Fig. 3: A chevron shaped 12 × 12 non-blocking planar paired-
egress switching design. For an N×N network with odd N/2,
a chevron shaped set of switch points, without switch point on
line N/2− 1 and N/2, is added. The total number of switch
points is N(N − 2)/4.

B. Routing

Algorithm 2 illustrates the procedure for determining switch
status and the permuted list in the routing process. The routing
algorithm for the chevron operates on the principle that if all
photon pairs entering the last layer are adjacent to each other,
except for two adjacent photons requiring pairing with the top-
and bottom-most photons, the last chevron layer can handle
their pairing. Alternatively, if all photons are already paired
except for the top- and bottom-most photons, the algorithm
can address this scenario as well. This approach is valid as
we recursively go from layer N/2 − 1 to N/2 − 2 reducing
the size of the switch from N ×N to (N − 2)× (N − 2) by
virtually pairing the photons that need to be matched with the
top- and bottom-most photons until reaching the trivial inputs
2× 2. This guarantees that at every recursion, all the photons
will have a pairing within the considered range, either true or
virtual pairings.

Determining where the pairs meet and which switch states to
set at layer l involves examining two different scenarios. First,
consider the case where the top- and bottom-most photons
form a pair, while the other photon pairs (either true or virtual)
are already adjacent. In this scenario, all switch points in layer
l are set to CROSS, causing the two outer photons to meet at
the middle (N/2, N/2 + 1) or (N/2 − 1, N/2) when l is
odd or even, respectively. However, if the top- and bottom-
most photons need to pair with two virtual pairings from
the previous layer (on lines i and i + 1), and the virtual
pair is oriented incorrectly, the switch point SW l

i is set to
CROSS. Consequently, the two outer photons adjust to meet
their partners, and if the pair resides in a different half (e.g.,
the top-most’s partner is in the bottom half), its partner also
moves to meet the outer qubit at the middle. This results in
only one switch point, aside from possibly SW l

i , being set to
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Fig. 4: Recursively constructing larger chevron circuits (Sec. V and Fig. 3) requires handling five possible cases as two
inputs are added, one at the top and one at the bottom. The same colored lines denote the location of photons to be paired.
(a) represents the case pairing the top-most photon with the bottom-most photon. In this case all the other input ports are
paired using previously-constructed internal non-blocking network. After applying the last chevron layer (not shown) the paired
photons shift up or shift down to finally pair in the BSAs layer. (b), (c) represents the case that the photons at the top-most
port and bottom-most port have to be paired with two other photons in upper half part of the switch configuration. In (b) the
two pairs face each other. In (c) the two pairs face the opposite side. (d), (e) represents the case that the photons at the most
top port and most bottom port have to be paired with two other photons in lower half part of the switch configuration. In (d)
the two pairs face each other. In (e) the two pairs face the opposite side.

Fig. 5: Brickwork design for a 12× 12 switching network.

BAR; SW l
i when or SW l

i+1 otherwise, while the remaining
switch points are set to CROSS. All the possible scenarios and
how the photons are moved are depicted in Fig. 4.

The runtime of the routing algorithm for the chevron archi-
tecture is O(N2). In each recursion, we go through the photon
list only once to find partners of the top- and the bottom-
most photons and all the switch states in the layer can then
be decided just by knowing where the top- and bottom-most
photons need to be moved to.

VI. BRICKWORK DESIGN

Our final design rearranges the switch points further into a
brickwork pattern as shown in Fig. 5.

A. Architecture

This time, an N ×N switch consists of N/2 layers. There
are three types of layers; odd, even, and the last layer. Unlike
previous designs, the number of switch points inside a layer
is independent of the layer number k.

Odd layers contain N/2−1 switch points, while even layers
contain N/2 switch points. The brickwork design is given by
the following switch point placement,

SW k
1 → SW k

3 → . . .→ SW k
N−3; for odd k,

SW k
0 → SW k

2 → . . .→ SW k
N−2; for even k.

(6)

The exception to this rule is the final layer that contains
⌊N/4⌋ switch points that are placed according to (6). The
total number of switch points is therefore given by

SW =
∑
odd k

SW k +
∑

even k

SW k = N(N − 2)/4, (7)

which shows that the brickwork design is also optimal in terms
of the number of switch points.

The brickwork design is similar to a full mesh structure of
Spanke and Beneš in [34], with one difference. The full mesh
architecture requires N layers to perform N ! full permutations,
while in the brickwork design N/2 layers are sufficient for
pairing an arbitrary input set.

B. Routing

The routing algorithm for pairing all the input photons in
the brickwork design is shown in Algorithm 3. The underlying
concept shares similarities with the Triangular design, but
the process of removing switches is more intricate. First,
we identify the partner photon Xi of photon XN−1 and
progressively shift it downward to meet with XN−1. If the
lowest line Xi can reach is line j, where j ̸= N − 2, we also
shift photon XN−1 up to line j+1. This method ensures that
upon removing all utilized switch points and wire segments
traversed by Xi and XN−1, the resultant structure maintains
a brickwork architecture, potentially with additional switch
points in the last and second-to-last layers if the photon Xi

is shifted with the earliest switch points it encounters while
XN−1 is shifted as late as possible. These extra switch points
can be configured to the BAR state, allowing for further
recursion of the same routing algorithm until we reach the
trivial photon parings.

A sample routing round for pairing two photons (X11 with
X2) in a 12× 12 brickwork switch is shown in Fig. 6. Given
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Algorithm 2 Routing algorithm for chevron design
Input: Photons: indexable list (X0, X1, X2, . . . , XN−1),

PL: set of photons to be paired {(Xi, Xj) | 0 ≤ i, j ≤ N − 1},
SW : set of switch states (initially null set),
left: indicating the start switch line considered in the recursion

Output: permuted list: π((X0, X1, . . . , XN−1)),
Set of switch states {SW l

k}
1: procedure ROUTING CHEVRON(Photons, PL, SW = ∅, left = 0)
2: n← length of Photons ▷ first call to the procedure will have n = N
3: if n is equal to 2 then
4: return Photons, SW
5: l← n/2− 1 ▷ Current switch layer
6: top, bot← Photons[0], Photons[n− 1]
7: Photons← remove top, bot from Photons
8: if (top, bot) ∈ PL then
9: if n/2 is even then

10: i← left+ n/2
11: else
12: i← left+ n/2− 1

13: SW ← SW + {SW l
j = Cross | for all j}

14: Photons, SW ← ROUTING CHEVRON(Photons, PL, SW , left+ 1)
15: Photons← insert top, bot into Photons at position i, i+ 1
16: return Photons, SW
17: top′, bot′ ← partner photons of top and bot respectively
18: PL← PL− {(top, top′), (bot, bot′)}+ {(top′, bot′)} ▷ virtual pair
19: Photons, SW ← ROUTING CHEVRON(Photons, PL, SW , left+ 1)
20: i, j ← indices such that Photons[i] = top′, Photons[j] = bot′

21: if i < j then
22: SW ← SW + {SW l

left+i = Bar}
23: else
24: i, j ← j, i
25: Photons[i], Photons[j]← top′, bottom′

26: if i is in top half then
27: SW ← SW + {SW l

left+i−1 = Bar}
28: Photons← insert top on the left of top′

29: Photons← remove bot′ and insert bot′, bot at the middle
30: else
31: SW ← SW + {SW l

left+j = Bar}
32: Photons← insert bot in on the right of bot′

33: Photons← remove top′ and insert top, top′ at the middle
34: SW ← SW + {SW l

k = Cross | for other unset switches in the layer}
35: return Photons, SW

that the distance between X2 and X11 exceeds N/2 + 1
making it impossible for the pair to meet on line (10, 11),
requiring that both photons must move to pair up on the
closest line to X11, which is (8, 9). By applying move as
soon as possible routing policy for X2 and move as late as
possible routing policy for X11 results in the desired permuted
list (X0, X1, X3, .., X8, X2, X11, X9, X10). We have now as-
signed nine switch states, leaving the switch points into a
brickwork design of smaller size with SW 6

0 being an extra
switch. Therefore, as shown in top-left side of Fig. 6, we set it
to the BAR state. These two move policies guarantee that after

pairing the last unpaired photon with its partner will leave the
switch in the Brickwork design and thus allowing the smaller
Brickwork to be routed the same way.

Similar to routing algorithms in triangular and chevron
designs, we traverse the photon list once per iteration, thus
the runtime of the routing algorithm in brickwork design is
also O(N2).

VII. DISCUSSION

Having demonstrated that our three proposed planar designs
are optimal and rearrangeable non-blocking, we now turn to a
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Algorithm 3 Routing Algorithm for the Brickwork design
Inputs: Photons: indexable list (X0, X1, X2, . . . , XN−1),

PL: set of tuple photons to be paired {(Xi, Xj) | 0 ≤ i, j ≤ N − 1},
SW : set of switch states (initially null set)

Outputs: Permuted list: π((X0, X1, . . . , XN−1)),
Set of switch states SW l

k

1: procedure ROUTING BRICKWORK(Photons, PLN/2, SW )
2: if (N is equal to 2) then
3: return Photons, SW
4: else
5: Find Xi ∋ (Xi, XN−1) ∈ PL
6: Let SW layer

j be the first switch point Xi encounters ▷ (j = i or i− 1) and (layer = N/2− 1 or N/2)
7: if j is equal to i then
8: SW ← SW + {SW layer

j = CROSS }
9: SW layer

j = CROSS
10: else
11: SW ← SW + {SW layer

j = BAR }
12: while j < N − 2 or layer > 0 do ▷ create a diagonal path from Xi toward XN−1

13: j++, layer--
14: SW ← SW + {SW layer

j = CROSS }
15: if j is equal to N − 2 then ▷ Xi and XN−1 are adjacent
16: SW ← SW + {SWL

N−2 = BAR ∀L = 2l (even layers), 0 ≤ 2l ≤ N/2− 1}
17: SW ← SW + {SWL

N−3 = BAR ∀L = 2l + 1 (odd layers), 1 ≤ 2l + 1 < layer}
18: Photons[i]← N − 2 and Photons[N − 1]← N − 1
19: else ▷ XN−1 needs to move up to be adjacent of j in j + 1
20: Photons[i]← j and Photons[N − 1]← j + 1
21: j++
22: while j < N − 2 do ▷ A diagonal path is created to route XN−1 to output port j + 1
23: SW ← SW + {SW layer

j = CROSS }
24: j++ and layer++
25: SW ← SW + {SWL

N−2 = BAR ∀L = 2l, (even layers) layer < 2l ≤ N/2− 1}
26: while Number of Assigned Switches < N − 2 do ▷ Set other unused SW on top of input port of Xi to BAR

27: SW ← SW + {SW layer=N/2
k = BAR }(0 ≤ k < i and start with layer = N/2 then N/2− 1)

28: PL← PL− (Xi, XN−1)
29: Photons′ ← reindex Photons without i and N − 1
30: Photons′, SW ←ROUTING BRICKWORK(Photons′, PL, SW )
31: Photons← merge(Photons′, i, N − 1, Photons[i], Photons[N − 1]) ▷ put Xi and XN−1 in the final places
32: return Photons, SW

more detailed analysis of their depth properties. The depth
is directly related to the expected losses of the switching
network. We are not aware of any work considering planar
designs for paired-egress outputs, making direct comparison
impossible. To place our work into the larger context of other
switching network designs, we consider existing planar and
non-planar designs, as well as classical permutation networks
and shared EPPS pool networks.

A. Switching network depth

We first focus on the maximum depth, which quantifies
the maximum number of switch points that a photon has to
traverse. For the Triangular design in Sec. IV, the maximum
depth is N − 2. For the Chevron design in Sec. V, the

maximum depth is N−2 when N/2 is even, N−3 when N/2
is odd. The Brickwork design in Sec. VI reduces the maximum
depth to N/2. The maximum depth of the Triangular and
Chevron designs is close to the optimal design for classical
planar N×N permutation networks, shown to be N−1 in [34].
The brickwork design on the other hand requires far fewer
switch point traversals in the worst case scenario, reducing
the overall loss in the switch.

In an ideal pairing mechanism, an arbitrary pair of input
photons should traverse the same number of switch points in
the same states. This is generally not true in real configura-
tions, leading to an imbalance between the number of switch
points that each photon of a pair passes through. In order
to quantify this imbalance, we introduce the depth difference

8



Fig. 6: A pairing sample to show the behavior of the routing
algorithm for a 12 × 12 brickwork structure. After pairing
X11 and its partner X2 at BSA4, we can conceptually redraw
the switch with the committed path removed. After redrawing,
the colored switch points will create a new (virtual) 10 × 10
layering arrangement for the remaining switch configuration.
All of the yellow switches will form the new first layer, all of
the blue switches the new second layer, etc.
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Fig. 7: Maximum depth required for pairing any combination
of input N in different scalable planar designs compared to
the optimal full permutation planar design proposed by Spanke
and Benes̆ [34].

∆, defined intuitively as the difference between the maximum
and the minimum depths of the switch. It is straightforward
to see from Fig. 2 that the minimum depth for the Triangular
design is 0. Therefore the ∆triangular = N − 2, which is also
the maximum depth.

For the Chevron design, the maximum depth depends on the
parity of N/2. When N/2 is odd, a photon traverses at most
N − 3 switch points, while its pairing partner needs to pass
through at least N/2−3 switch points, giving ∆chevron = N/2.
The same depth difference is obtained for the case when N/2
is even. In this case, the maximum and minimum depths are
given by N − 2 and N/2− 2, respectively. In the Brickwork
design, the maximum depth is N/2, while the minimum depth

Fig. 8: Total number of switch points for up to 16 input ports
in different planar designs. For non-planar designs [33], non-
switching crosspoints are also taken into account. The x-axis
represents size of input/output, y-axis represents the number
of switches points and non switching crosspoints within the
configurations.

is ⌈N/4− 1⌉, resulting ∆brickwork = ⌊N/4 + 1⌋.
Out of the three proposed switches, the Brickwork design is

the most balanced thanks to its lowest depth difference. This
means that the photons traversing the switch experience com-
parable losses. The opposite is true for the Triangular design.
Whether this is an undesirable effect ultimately depends on
the network traffic. For quantum networks with fairly uniform
traffic patterns, the Triangular design results in an uneven
distribution of end-to-end Bell pair generation rates, leading
to a decrease in the quality of service for certain connections.
On the other hand, we can envision scenarios where this
imbalance may be a welcome feature. The input ports with
few switch points and their respective BSAs can be reserved
for high-demand connections. For example, the optical switch
may be a component of a quantum gateway connecting two
independent networks. The low-loss input ports can be used for
internetwork connections, while the more lossy input ports can
be used for entanglement distribution within a single network.

B. Comparison with other designs

In this section, we compare the designs in terms of the
number of switches with other related designs. Fig. 7 illustrates
the maximum depth for the our proposed designs and those
analyzed in [34]. Given that our switches are designed for
paired-egress BSA pools, it is not surprising that the their
maximum depth is always lower than the optimal full permu-
tational switch of [34].

Fig. 8 shows the minimum number of required switch points
in related planar and non-planar designs for up to 16 input
ports. The focus of this paper has been planar designs suitable
for chip fabrication, but of course non-planar designs can
simply be “flattened” into planar form. In this case, we have to
consider the fixed crosspoints, which can be viewed as planar
switch points with permanent CROSS states.
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our designs Spanke & Beneš [34] Beneš [4] Waksman [5]
Planar/non-planar planar planar non-planar non-planar
No. of Switches N(N − 2)/4 N(N − 1)/2 N log2 −N/2 N log2 N −N + 1
Non-switching crosspoints 0 0 N(N − log2 N − 1)/2 N(N − log2 N − 1)/2
No. of coupling & decoupling stages 2 2 4 log2 N − 2 4 log2 N − 2

TABLE I: The resource complexity of different scalable designs for (N ×N ) switching networks in terms of total number of
switches, total number of cross points and total number of required interfaces for coupling and decoupling of the inputs.

Drost et al.’s work proposing designs for small-scale non-
planar switching networks is the work most comparable to our
own, but does not address planar designs and does not include
a scalable design [33]. Fig. 8 includes data on planarized Drost
designs, counting switches and non-switching crosspoints up
to 10 ports, the largest design they found. More detailed
follow-on design work needs to consider the non-planar design
and analyze the photon loss based on the number of interfaces
required for coupling and decoupling of input photons toward
2× 2 switches.

Table I compares our proposed planar designs for paired
egress to other scalable designs. To the best of our knowledge,
no scalable structure for input pairing has been found before
this work. Therefore we compare to some important full
permutation switch networks. As the table shows, the key
result of our paper is the > 50% reduction in switch points
compared to Spanke and Beneš’s optimal planar design for
full permutation switching networks [34].

VIII. CONCLUSION

We have shown that for an N ×N switching network with
paired-egress BSA Pools, the lower bound on the number of
switching points in a planar architecture is N(N − 2)/4. We
proposed three rearrangeable non-blocking designs that satu-
rate this lower bound, along with their corresponding efficient
routing algorithms. Due to their recursive construction, our
designs can be scaled to arbitrary size.

Our switch designs can be reversed in a straightforward
manner. The BSAs can be replaced with EPPS nodes, and the
routing algorithms then distribute the entangled photon pairs
to the desired outputs. Therefore, our solution is directly appli-
cable to the shared EPPS Pools switching problem considered
in [33].

The shared BSA Pool architecture was recently used as an
integral component in a proposal for distribution of remote
entanglement between neutral ytterbium atoms coupled to
optical cavities [48]. This demonstrates the relevance of optical
switches with paired-egress BSA Pools, and the role they
are expected to play in distributed quantum computing and
quantum networking.

The performance of distributed systems crucially depends
on how effectively we can harness the power of connected
computers. This effectiveness largely relies on the perfor-
mance of their network systems and architecture. Ideally,
the network should always be capable of processing com-
munication requests from computers; any delay waiting for
network responses leads to decreased overall performance.
Our rearrangeable non-blocking design ensures that the inputs

and outputs of switches operate without stalling, achieving
multiplexed parallel communication processing among differ-
ent input-output pairs. Therefore, our optical switch designs
prevent contention for communication from being a system-
wide bottleneck. Thereby our work is essential for large-scale
distributed quantum computers and the quantum Internet.
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[34] R. A. Spanke and V. Beneš, “N-stage planar optical permutation
network,” Applied Optics, vol. 26, no. 7, pp. 1226–1229, 1987,
doi:10.1364/AO.26.001226.

[35] V. Krutyanskiy et al., “Entanglement of trapped-ion qubits separated
by 230 meters,” Phys. Rev. Lett., vol. 130, p. 050803, Feb 2023,
doi:10.1103/PhysRevLett.130.050803.

[36] A. Crespi et al., “Integrated photonic quantum gates for polariza-
tion qubits,” Nature communications, vol. 2, no. 1, p. 566, 2011,
doi:10.1038/ncomms1570.

[37] G. Corrielli et al., “Rotated waveplates in integrated waveguide
optics,” Nature communications, vol. 5, no. 1, p. 4249, 2014,
doi:10.1038/ncomms5249.

[38] X. Xu et al., “Self-calibrating programmable photonic integrated
circuits,” Nature Photonics, vol. 16, no. 8, pp. 595–602, 2022,
doi:10.1038/s41566-022-01020-z.

[39] W. Bogaerts et al., “Programmable photonic circuits,” Nature, vol. 586,
no. 7828, pp. 207–216, 2020, doi:10.1038/s41586-020-2764-0.

[40] J. Wang, F. Sciarrino, A. Laing, and M. G. Thompson, “Integrated
photonic quantum technologies,” Nature Photonics, vol. 14, no. 5, pp.
273–284, 2020, doi:10.1038/s41566-019-0532-1.

[41] B. E. Saleh and M. C. Teich, Fundamentals of Photonics. John Wiley
& Sons, 2019, doi:10.1002/0471213748.

[42] J. Kim et al., “1100x1100 port MEMS-based optical crossconnect with
4-dB maximum loss,” IEEE Photonics Technology Letters, vol. 15,
no. 11, pp. 1537–1539, 2003, doi:10.1109/LPT.2003.818653.

[43] N. C. Harris et al., “Large-scale quantum photonic circuits in silicon,”
Nanophotonics, vol. 5, no. 3, pp. 456–468, 2016, doi:10.1515/nanoph-
2015-0146.
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