
A Machine Learning Approach for Simultaneous
Demapping of QAM and APSK Constellations

Arwin Gansekoele∗†, Alexios Balatsoukas-Stimming‡, Tom Brusse§,
Mark Hoogendoorn†, Sandjai Bhulai† and Rob van der Mei∗†
∗Centrum Wiskunde & Informatica, Amsterdam, the Netherlands

†Vrije Universiteit, Amsterdam, the Netherlands
‡Eindhoven University of Technology, Eindhoven, the Netherlands

§Ministry of Defence, The Hague, the Netherlands
Email: arwin.gansekoele@cwi.nl

Abstract—As telecommunication systems evolve to meet in-
creasing demands, integrating deep neural networks (DNNs) has
shown promise in enhancing performance. However, the trade-
off between accuracy and flexibility remains challenging when
replacing traditional receivers with DNNs. This paper introduces
a novel probabilistic framework that allows a single DNN
demapper to demap multiple QAM and APSK constellations
simultaneously. We also demonstrate that our framework allows
exploiting hierarchical relationships in families of constellations.
The consequence is that we need fewer neural network outputs
to encode the same function without an increase in Bit Error
Rate (BER). Our simulation results confirm that our approach
approaches the optimal demodulation error bound under an
Additive White Gaussian Noise (AWGN) channel for multiple
constellations. Thereby, we address multiple important issues in
making DNNs flexible enough for practical use as receivers.

Index Terms—communication systems, machine learning, sym-
bol demapping

I. INTRODUCTION

In the modern era, telecommunication systems have served
as the foundation for an unprecedented revolution in informa-
tion sharing, connecting people and systems across the globe
in real time. From enabling seamless international business
transactions to facilitating critical emergency responses, these
intricate networks have become indispensable to our daily
lives. However, as we continue to scale these systems to
meet the ever-growing demands for higher data rates, lower
latency, and more reliable connections, a myriad of challenges
emerge. These range from network congestion and channel
distortion to the efficient allocation of resources, and pose sig-
nificant obstacles to the continued expansion and optimization
of telecommunication infrastructures. To continue addressing
these challenges, the use of data-driven solutions such as
DNNs has emerged as a promising approach [1]–[3].

One such approach is to replace a traditional receiver with
a DNN to improve the performance. There are multiple ways
that differ in which components are replaced. First, one could
replace the entire sender-receiver pipeline with a DNN [4]–[6].
Second, one could perform only channel estimation and equal-
ization using DNNs [7]–[9]. Finally, it is possible to replace
the entire receiver but leave the transmitter untouched [10]–
[14]. These approaches exist on a spectrum where replacing

more components with a DNN leads to increased accuracy at
the expense of reduced flexibility.

To better illustrate this flexibility issue, we focus on the third
case, where the receiver is replaced with a DNN. Some of the
most important tasks of a receiver generally include channel
equalization followed by symbol demapping/demodulation. A
DNN can model a receiver by taking the received sequence,
possibly augmented with pilots, and directly outputting the bit
log-likelihood ratios (LLRs) [10]. By using a learning-based
approach, [10] were able to perform the demapping accurately
with minimal numbers of pilots.

However, traditional demappers can adjust many settings
as needed. For example, one could adjust the bit mapping
of the symbols in a constellation or even demap a different
constellation entirely. Using multiple-bit mappings may not
be necessary for equally-spaced constellations such as QAM,
but generalized constellations may permit multiple different
bit mappings.

One would need a new neural network for every variant
by hardcoding the mapping and constellation. For example,
for the DVB-S2x standard [15], one would need at least
118 different DNNs to model all settings. Implementing a
single neural network in telecommunication systems is already
complex; scaling that to 118 different networks significantly
amplifies the challenges. Such an approach is also wasteful,
as the problems of channel estimation and equalization are
often similar across constellations. Thus, sharing the same
DNN would be beneficial for these tasks. While [10] includes a
scheme to model all variants of 4n-QAM with one DNN, there
is, to our knowledge, no further work done for a generalizable
solution to this problem.

To that end, we propose a probabilistic framework that
makes it possible for a neural network demapper to operate
on multiple constellations. Our framework is provably more
general than previous neural demapper by including modular-
ity without compromising performance. Our contributions are
as follows.

1) We provide a generalization of [10] in our framework
that allows neural demappers to predict bit LLRs based
on a bit mapping that is not hard-coded. This allows

ar
X

iv
:2

40
5.

09
90

9v
1

 [
cs

.L
G

]
 1

6
M

ay
 2

02
4

neural demappers using our framework to be as flexible
as traditional demappers.

2) We add a representation and associated mapping to
the framework. We show that by adding these, our
framework becomes a generalization of methods that
directly model bit LLRs with a DNN. It would thus be
as accurate as these methods while being more flexible.

3) We demonstrate how our framework allows us to use a
hierarchical structure in APSK to model multiple APSK
constellations for neural demappers. We do so with
fewer bits without compromising accuracy.

4) We empirically evaluate our framework and show that
a neural demapper trained on multiple constellations
simultaneously approaches the optimal demodulation
error bound under AWGN for all constellations.

II. METHODOLOGY

Symbol demapping or demodulation is the conversion of
received signals back into digital data. Generally, a demapper
computes an LLR or makes a hard decision by comparing the
received I/Q samples to a set of constellation points. Given
parameters θ and a received sequence x̂ ∈ CL, one could
define this process using a DNN f (LLR) as(

f (LLR)
θ (x̂)

)
ij
= log

P (bi = 1 | x̂j , θ)

P (bi = 0 | x̂j , θ)
. (1)

The neural network takes the sequence x̂ and outputs the
LLR for each element of the sequence. The number of bits
B here depends on the number of symbols in the original
constellations. The network outputs the negative LLR for
convenience, as a convenient property of the negative LLR
is that the sigmoid function (σ) gives

σ

(
log

P (bi = 1 | x̂j , θ)

P (bi = 0 | x̂j , θ)

)
= P (bi = 1 | x̂j , θ). (2)

This probability can be optimized using binary cross-
entropy. Equation (1) can be used jointly to demap and offset
the channel effect as most of the complexity is hidden behind
the learned parameters θ.

This is where the problem of inflexibility we put forward
earlier stems from. As the DNN is highly non-convex, it is not
straightforward to adjust the network to, e.g., use a different
bit mapping. To support a new bit mapping Mb, one would
need access to the underlying symbols. Overall, that is why
we propose adjustments to this formulation.

A. Mapping Independence

While defining an optimal, standard bit mapping for QAM is
straightforward, this is not the case for all constellations. That
is why it is desirable that a demapper can perform any arbitrary
mapping from symbols to bit LLRs. We model the probability
of a received sample x̂ being symbol s ∈ S directly with a
neural network to achieve this. Here, a symbol corresponds to
the label of a constellation point, and S is the set of all symbols
in a constellation. We define the symbol DNN f (symbol)

θ as

(
f (symbol)
θ (x̂)

)
ij
= P (si ∈ S | x̂j , θ). (3)

As the DNN now directly models the labels of the constel-
lation points, we can explicitly define the bit mapping Mb as
a function that maps symbol probabilities to bit probabilities.
We define the resulting bit probabilities as

P (bi = 1 | x̂j , θ) =
∑
s∈S

(Mb(s))i=1

P (s | x̂j , θ) .
(4)

Equation (4) uses the fact that the probability P (bi = 1 | x̂j)
corresponds to the probability that x̂j should be demapped as
one of the symbols that map to bit i. It can thus be computed
by summing over all symbol probabilities where (Mb(s))i =
1. Note that Mb is a function that maps a symbol to a bit
string and thus (Mb(s))i refers to the i’th bit of symbol s
under bit mapping Mb.

This formulation can be numerically unstable, as it often
means adding many small values to a number close to 1.
Using the LogSumExp (LSE) trick alongside clipping the
probabilities so they cannot be larger than 1 is sufficient to
guarantee stability at inference time, but we have found it
sub-optimal for training. To address this, note that an important
feature of the LSE function is that it is a smooth approximation
of the maximum function. As the training error goes to 0, at
most one term in this series does not go to 0. Consequently,
optimizing a stable pseudo-objective is one approach to deal
with instability. We denote ŝ the ground-truth symbol for x̂j

and 1 the indicator function which is equal to 1 when ŝ = s
and 0 otherwise. The approximate bit probability is then

P (bi = 1 | x̂j , θ) ≈
∑
s∈S

(Mb(s))i=1

1[s = ŝ]P (s | x̂j , θ) . (5)

Intuitively, (5) only considers the probability of the ground-
truth symbol during optimization. This addresses the instabil-
ity, as we no longer need to apply a sum over probabilities. In
the limit where the loss is 0, (4) and (5) are equivalent since
the loss is minimal when the correct symbol is demapped.
Note that we still use (4) at test time.

B. 4n-QAM Representation

While mapping independence is an important property to
have, optimization of the network becomes exponentially
harder through this formulation. If the network previously had
to predict 8 bits, it now has to predict 256 symbols. Many
constellation shapes have large numbers of symmetries, so
we are optimizing a model to predict with 256 degrees of
freedom where 8 is sufficient. A constellation such as 4n-
QAM can be represented in a highly compact manner due to
its square structure. We demonstrate this in Fig. 1. Intuitively,
the square structure makes it possible to encode every point
in, e.g., 16-QAM using two sets of four lines. This can thus be
encoded using two sets of two bits, which we interleave to get
a hierarchy. One can confirm this hierarchy with the overlaid

00 01 11 10

11

10

01

00
0 1

0

1

I1 Q1 I2 Q2r =

Fig. 1: An example of QPSK and 16QAM overlaid. The
representation is determined by counting from left to right
and bottom to top in Gray code. Afterwards, interleave the
in-phase and quadrature components to get a hierarchy. The
representation values match the position in the representation
by colour.

QPSK constellation, which forms a hierarchy with 16-QAM
due to the interleaving and Gray code.

Knowing this, we adjust the network again to ensure it
takes advantage of this hierarchy while retaining the mapping
independence. To do so, we formulate a hierarchical repre-
sentation r with associated mapping Mr that maps symbols
to the representation. While representation r can be of any
type and dimension, we opted for a binary representation as
it is a natural fit for 4n-QAM. The desired representation
r(4

n-QAM) is straightforward in this framework. As [10] have
already observed that 4n-QAM corresponds to a hierarchical
classifier, we can take the representation Mr such that it is
an extension of Mb for all 4n-QAM constellations. Given
this representation mapping, we propose the DNN f

(repr)
θ that

predicts the LLRs of this representation as(
f
(repr)
θ (x̂)

)
ij
= log

P (ri = 1 | x̂j , θ)

P (ri = 0 | x̂j , θ)
. (6)

We use (6) for our simulations. Having defined both the
DNN and representation mapping, We can compute the prob-
ability of a symbol s by multiplying the probabilities of the
hierarchical classifier based on mapping Mr as

logP (s ∈ S | x̂j) =

R∑
k=1

logP (ri = (Mr(s))k | x̂j , θ). (7)

The advantage of this is that we can now split the different
functions required of a demapper without compromising the
expressiveness of our neural network. If we take Mr such
that it is an extension of Mb for some constellation, it follows

100 110

111

011

010000

001

101

10

00 01

11

Fig. 2: A QPSK (blue) and offset 8-PSK (red) constellation
overlaid. The latter constellation hierarchically relates to the
former, as by adding one more bit (red) to the two bits (blue),
we can split the quadrants in two and move from QPSK to
offset 8-PSK.

that P (bi = 1 | x̂j) = P (ri = 1 | x̂j),∀i ∈ D(Mb). Here,
D(Mb) refers to the domain of the bit mapping IE. the indices
of the bit string b. This result implies that our formulation for
4n-QAM is a generalization of directly modelling the LLRs
with a neural network. Our framework should thus be just as
accurate as models directly optimized on the LLR while able
to adjust the bit mapping. As a side note, while the remaining
QAM constellations do not follow this hierarchy, we can still
add them to the representation. Doing so gives us a shared
representation for 4n-QAM and separate representations for
2∗4n-QAM to get a representation for all QAM constellations.

C. APSK Representation

The advantage of separating Mr and Mb is not imme-
diately apparent for 4n-QAM. However, the family of 4n-
QAM is anomalous because most families of constellations do
not permit such a direct equivalence between the bit mapping
and a hierarchical classifier. A notable example of this is the
family of circular APSK constellations. This family usually
consists of a set of circles with constellation points located on
these circles. These configurations can vary greatly in terms of
the number of circles, spacing between circles, and points on
each circle. If we take the DVB-S2x standard [15] of APSK
constellations, for example, some common constellations are
(4+12)-APSK, (8+8)-APSK, or (4+12+16)-APSK. Here, a
(4+12)-APSK constellation, for example, refers to a shape with
two circles where the inner and outer circles have 4 and 12
constellation points, respectively.

Most of these constellations have different bit mappings
that are also not generally hierarchically related despite many
similarities across APSK constellations that could be used to
create a hierarchical classifier. All symbols are located on
circles, and symbols are usually equally spaced. Furthermore,

while any phase offset is possible, many circles have a phase
offset of π/M with M the number of symbols on that circle.
In particular, an interesting hierarchy occurs for this specific
phase offset. To illustrate this, we have drawn both QPSK
and 8-PSK with an offset of π/8 in Fig. 2. If we wanted to
identify the symbols based on decision boundaries, we could
use the same decision boundaries for both constellations. In
both constellations, one could use two bits to identify which
of the four quadrants the point lies in. For 8-PSK with offset,
one only needs to add one more bit to identify which point in
the quadrant it is. This hierarchy allows us to reduce the size
of our APSK representation.

In fact, given this offset of π/M , this hierarchy holds for
multiple series of points. If we have 4d constellation points
on a circle with d = 1, 3, 5, 7, . . . an odd number, then every
circle with 2n × 4d points with n = 1, 2, . . . is part of this
hierarchy. For each of these series, we get the effect that
doubling the number of points per quadrant comes down to
splitting each decision region in two. Using this hierarchical
relationship, we can model multiple APSK constellations using
a smaller shared representation without losing accuracy. Note
that we still need separate representations for different values
of d, as each series forms its own hierarchy.

However, this hierarchy only captures part of the constella-
tion. For example, the amplitudes of the circles differ for each
constellation. We need separate representations for each con-
stellation and code rate to adequately capture this. With Gray
coding, we label the circles from the smallest amplitude to the
largest. Adding this component, our representation is complete
for constellations that satisfy the hierarchy mentioned earlier.

Not all APSK constellations have an offset of π/8. Some
APSK constellations are even irregular to a degree where
none of the assumptions made earlier apply. An important
example is 8-PSK, which has an offset of 0. To handle these
constellations, we simply append their bits to the overall
representation such that Mr is an extension of Mb for these
constellations.

Finally, we mask any bits not used in the calculation. To
conclude, we can now model any arbitrary APSK constel-
lation with fewer bits than previously required through the
combination of constellation-specific bits and a set of general
hierarchies. It is also possible to combine the QAM and
APSK representations by concatenating both. Interestingly,
combining both allows for additional representation sharing.
The first two bits in the 4n-QAM representation correspond
to the quadrant as well and thus can be shared with the APSK
representation.

III. SIMULATION RESULTS

To evaluate the performance of our method, we have opted
to simulate data over a simple AWGN channel to better under-
stand how our method behaves under various combinations of
constellations. As an AWGN channel permits a simple optimal
hard-decision demodulation rule, we use that as a bound to
benchmark our method. The simulation pipeline is depicted in
Fig. 3.

Matched
Filtering

Symbol
Mapping

Matched
Filtering

AWGN

Symbol
Demapping

Fig. 3: The system model used to evaluate our approach. For
symbol demapping, we use a hard-decision demapper as a
baseline and compare it to our DNN.

TABLE I: Hyperparameters used for the simulations.

Name Value

of Sequences 10000
Block Size 2048
SNR Range (dB) −5 - 30
Filter Rolloff 0.25
Filter Span 10
Optimiser AdamW [16], [17]
Learning Rate 0.003
Batch Size 64× #Datasets
Number of Runs 3
Max Epochs 100

To perform our experiments, we use a simple DNN receiver.
It consists of two hidden layers of size 256 each followed by
a ReLU activation function and a batch normalization layer.
It has a linear output layer that generates the representation,
after which we apply our method to generate the bit LLRs. We
denote the settings used to run our experiments in Table I. Out
of the 10,000 sequences per constellation, we use 1,000 for
testing, 1,000 for validation, and 8,000 for training. We found
these settings sufficient to train a good neural demapper in our
validation.

For the AWGN channel, we sampled uniformly at random
from the SNR range in Table I. Each sequence has a different
SNR and thus the DNN demapper should learn how to correct
for the noise level. We generate our APSK constellations based
on the DVB-S2x specification [15]. These constellations are
specified by the configuration and code rate. For example, the
constellation 64-APSK-7/9 is the APSK constellation with 64
constellation points associated with the code rate 7/9 under
this specification. The code rate generally specifies a different
distance between the circles in the APSK constellation. We
take a diverse subset of the 118 constellations for our experi-
ments.

With our simulations, we wanted to evaluate how accurate
our joint method is compared to what is theoretically achiev-
able. We split up the results into three sections.

1) First, we trained a network on 256-QAM and validated
that it transfers to 64-QAM, 16-QAM, and QPSK.

2) Second, we trained a network on multiple QAM and
APSK constellations and evaluated its performance.

5 0 5 10 15 20 25 30
Eb/No (dB)

10 7

10 6

10 5

10 4

10 3

10 2

10 1

Bi
t E

rro
r R

at
e

(B
ER

)
256-QAM - Bound
256-QAM - DNN (Trained)
QPSK - Bound
QPSK - DNN (Transfer)
16-QAM - Bound
16-QAM - DNN (Transfer)
64-QAM - Bound
64-QAM - DNN (Transfer)

Fig. 4: The BER of a DNN trained on 256-QAM compared to
the optimal hard decision bound in our setup. The (trained)
and (transferred) tags imply whether the model saw the
constellation during training or not.

3) Finally, we evaluated whether the model from the second
experiment mimicked the decision boundaries previously
defined in Fig. 2.

A. QAM Generalisability

While the authors in [10] proposed an architecture that can
support multiple QAM constellations, they did not train one
model to support all simultaneously. That is why, first, we
look into whether our method can generalize from one larger
QAM constellation to smaller constellations. To do so, we have
trained one DNN on 256-QAM and evaluated it on QPSK, 16-
QAM, and 256-QAM. We report the results in Fig. 4.

Interestingly, the model approaches the boundary set by
the hard-decision baseline for all constellations. However, the
model was only trained on the 256-QAM constellation. We
thus confirm the original hypothesis in [10] and empirically
show that we retain this property through our framework.

B. Adding APSK Constellations

As we have shown that our formulation allows us to train
a single model for 4n-QAM, we now include our APSK
representation for evaluation. To do so, we added nine different
(A)PSK constellations from the DVB-S2x specification to the
existing set of four 4n-QAM constellations. This set is highly
diverse, giving a good overview of how our method would
perform across a wide variety of constellations. We report the
BER curves in Fig. 5 and Fig. 6.

We find that all constellations either approach or are equal to
the optimal hard-decision performance. This result is interest-
ing, as one could think that performance would degrade when
jointly optimizing over multiple objectives. However, as we
only share bits between objectives that share a common goal,
i.e. share a hierarchy, the multiple objectives do not actually
interfere with one another. The upstream task of determining

5 0 5 10 15 20 25 30
Eb/No (dB)

10 6

10 5

10 4

10 3

10 2

10 1

Bi
t E

rro
r R

at
e

(B
ER

)

QPSK - Bound
QPSK - DNN
16-APSK-90/180 - Bound
16-APSK-90/180 - DNN
16-APSK-100/180 - Bound
16-APSK-100/180 - DNN
64-APSK-128/180 - Bound
64-APSK-128/180 - DNN
256-APSK-124/180 - Bound
256-APSK-124/180 - DNN

Fig. 5: BER of a DNN trained on all included 4n-QAM and
APSK constellations using our framework. Shown are the first
half of the constellations trained.

5 0 5 10 15 20 25 30
Eb/No (dB)

10 6

10 5

10 4

10 3

10 2

10 1
Bi

t E
rro

r R
at

e
(B

ER
)

256-QAM - Bound
256-QAM - DNN
16-QAM - Bound
16-QAM - DNN
64-QAM - Bound
64-QAM - DNN
8-PSK - Bound
8-PSK - DNN
32-APSK-2/3 - Bound
32-APSK-2/3 - DNN
16-APSK-2/3 - Bound
16-APSK-2/3 - DNN
16-APSK-9/10 - Bound
16-APSK-9/10 - DNN
64-APSK-7/9 - Bound
64-APSK-7/9 - DNN

Fig. 6: BER of a DNN trained on all included 4n-QAM and
APSK constellations using our framework. Shown are the
second half of the constellations trained.

what symbol an I/Q value maps to is hypothetically also the
same, and the simulation results validate this hypothesis.

Fig. 5 contains one of the most interesting sets in this
experiment. This is the set of QPSK, (8 + 8)-APSK-90/180,
(8+8)-APSK-100/180, (4×16)-APSK-128/180 and (8×32)-
APSK-124/180. Note that the adjusted notation refers to the
number of circles and how many constellation points reside
on each circle. All of these constellations fall under the
hierarchical classifier we discussed previously, with d = 1
as the base number (which refers to QPSK). Interestingly, all
of these constellations are accurately classified with a single
model despite sharing bits. Due to the sharing, we only need
12 bits for this subset through our hierarchical representation:
two shared bits for the quadrant, three bits shared by all to

(a) QPSK (b) Offset 8-PSK

Fig. 7: The decision boundaries of the joint model for both
QPSK and offset 8-PSK. Our DNN seems to learn the optimal
decision boundaries as depicted in Figure 2.

determine which point in the quadrant it is, and seven bits
to identify which circle the constellation point lies on. If we
were to model this by simply appending the required number
of bits for each constellation to the representation, we would
need 24 bits. We can conclude from this set of constellations
that the hierarchy we established allows sharing parameters
without harming performance.

In Fig. 6, we depict the other constellations. This set consists
of more distinct constellations. Notable examples are 8-PSK,
(4 + 12)-APSK-2/3 and (8 + 16 + 20 + 20)-APSK-7/9. Note
that the last constellation also follows the d = 1 hierarchy in
the inner two circles. In particular, 8-PSK does not share a
single bit with any of the other constellations. Despite this, it
clearly does not suffer in terms of performance. From this, we
can conclude that adding separate bits for constellations that
do not fit in the hierarchy can be a good solution when no
hierarchy is easily identifiable.

On a similar note, the QAM constellations also do not suffer
from being trained jointly with the APSK representations. In
fact, the 256-QAM BER curve even seems slightly closer to
the optimum than what was reported in Fig. 4. It is important
to note that we included the QPSK, 16-QAM and 64-QAM
data for this training run, which we did not for Fig. 4. This
thus suggests that data from constellations that share bits can
improve the performance of those constellations.

C. QPSK vs offset 8-PSK, Distribution Modelling

To get more insight into why our model performs well, we
plotted the decision boundaries our DNN receiver generates in
Fig. 7. Here, we depict the boundaries for the symbols when
considering QPSK and offset 8-PSK as in Fig. 2. These bound-
aries are based on the two quadrant representation bits and the
first bit of the d = 1 shared series. Interestingly, the decision
boundaries generated by our DNN correspond roughly with the
optimal decision boundaries we have previously established.
Clearly, our shared representation works as the DNN models
the optimal decision boundaries.

IV. CONCLUSION

We proposed a framework that allows us to jointly train
on and generalize to multiple types of constellations. In
this framework, we included mapping independence and the

capability to use hierarchical relationships in families of
constellations. We found that it is not only possible to train a
model jointly on multiple constellations, but that such a model
approaches the hard-decision BER bound under AWGN. The
framework we introduced thus opens up the possibility to
efficiently model families of constellations in the context of
DNNs. Our framework is modular and applicable to any deep-
learning receiver pipeline. It is thus interesting to test in differ-
ent settings, for more types of constellations, and under more
complicated channel effects. Furthermore, application to real
data and analysis of the resulting computational complexity
would be interesting.

REFERENCES

[1] C. Zhang, P. Patras, and H. Haddadi, “Deep Learning in Mobile and
Wireless Networking: A Survey,” IEEE Communications Surveys &
Tutorials, vol. 21, no. 3, pp. 2224–2287, 2019.

[2] B. Ozpoyraz, A. T. Dogukan, Y. Gevez, U. Altun, and E. Basar, “Deep
learning-aided 6g wireless networks: A comprehensive survey of revo-
lutionary phy architectures,” IEEE Open Journal of the Communications
Society, vol. 3, pp. 1749–1809, 2022.

[3] X. You, C.-X. Wang, J. Huang, X. Gao, Z. Zhang, M. Wang, Y. Huang,
C. Zhang, Y. Jiang, J. Wang et al., “Towards 6g wireless communication
networks: Vision, enabling technologies, and new paradigm shifts,”
Science China Information Sciences, vol. 64, pp. 1–74, 2021.

[4] T. O’Shea and J. Hoydis, “An introduction to deep learning for the
physical layer,” IEEE Transactions on Cognitive Communications and
Networking, vol. 3, no. 4, pp. 563–575, 2017.

[5] S. Dörner, S. Cammerer, J. Hoydis, and S. ten Brink, “Deep Learning-
Based Communication Over the Air,” IEEE Journal of Selected Topics
in Signal Processing, vol. 12, no. 1, pp. 132–143, Feb. 2018.

[6] H. Xie, Z. Qin, G. Y. Li, and B.-H. Juang, “Deep learning enabled
semantic communication systems,” IEEE Transactions on Signal Pro-
cessing, vol. 69, pp. 2663–2675, 2021.

[7] M. Soltani, V. Pourahmadi, A. Mirzaei, and H. Sheikhzadeh, “Deep
Learning-Based Channel Estimation,” IEEE Communications Letters,
vol. 23, no. 4, pp. 652–655, Apr. 2019.

[8] E. Balevi, A. Doshi, and J. G. Andrews, “Massive mimo channel
estimation with an untrained deep neural network,” IEEE Transactions
on Wireless Communications, vol. 19, no. 3, pp. 2079–2090, 2020.

[9] Y. Wang, H. Lu, and H. Sun, “Channel estimation in irs-enhanced
mmwave system with super-resolution network,” IEEE Communications
Letters, vol. 25, no. 8, pp. 2599–2603, 2021.

[10] M. Honkala, D. Korpi, and J. M. J. Huttunen, “DeepRx: Fully Con-
volutional Deep Learning Receiver,” IEEE Transactions on Wireless
Communications, vol. 20, no. 6, pp. 3925–3940, Jun. 2021.

[11] Z. Zhao, M. C. Vuran, F. Guo, and S. D. Scott, “Deep-waveform:
A learned ofdm receiver based on deep complex-valued convolutional
networks,” IEEE Journal on Selected Areas in Communications, vol. 39,
no. 8, pp. 2407–2420, 2021.

[12] D. Korpi, M. Honkala, J. M. Huttunen, and V. Starck, “Deeprx mimo:
Convolutional mimo detection with learned multiplicative transforma-
tions,” in ICC 2021 - IEEE International Conference on Communica-
tions, 2021, pp. 1–7.

[13] T. Raviv, S. Park, O. Simeone, Y. C. Eldar, and N. Shlezinger, “Online
meta-learning for hybrid model-based deep receivers,” IEEE Transac-
tions on Wireless Communications, pp. 1–1, 2023.

[14] T. Raviv and N. Shlezinger, “Data augmentation for deep receivers,”
IEEE Transactions on Wireless Communications, pp. 1–1, 2023.

[15] A. Morello and V. Mignone, “Dvb-s2: The second generation standard
for satellite broad-band services,” Proceedings of the IEEE, vol. 94,
no. 1, pp. 210–227, 2006.

[16] D. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
in International Conference on Learning Representations (ICLR), San
Diega, CA, USA, 2015.

[17] I. Loshchilov and F. Hutter, “Decoupled weight decay regularization,”
in International Conference on Learning Representations (ICLR), 2017.

	Introduction
	Methodology
	Mapping Independence
	4n-QAM Representation
	APSK Representation

	Simulation Results
	QAM Generalisability
	Adding APSK Constellations
	QPSK vs offset 8-PSK, Distribution Modelling

	Conclusion
	References

