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Abstract. We address the homogenization of the two-dimensional Dirac operator with
position-dependent mass. The mass is piecewise constant and supported on small pairwise
disjoint inclusions evenly distributed along an ε-periodic square lattice. Under rather gen-
eral assumptions on geometry of these inclusions we prove that the corresponding family of
Dirac operators converges as ε → 0 in the norm resolvent sense to the Dirac operator with a
constant effective mass provided the masses in the inclusions are adjusted to the scaling of
the geometry. We also estimate the speed of this convergence in terms of the scaling rates.

1. Introduction
The Dirac equation describes the behaviour of relativistic spin-1

2 quantum particles. This
equation plays an important role in the study of two-dimensional structures with honeycomb
symmetries such as the artificial material graphene; see [FW12, FW14] and the references
therein. The effective Dirac operator for the graphene is massless, but a non-trivial mass term
can appear when the graphene sheet is deposited on another crystal such as hexagonal boron-
nitride [JK14, KUM12, SSZ08]. The corresponding mass term can be position-dependent,
when the crystal beneath the graphene sheet has bumps or trenches, where the distance
between graphene and boron-nitride increases. Dirac operators with position-dependent mass
are already considered in mathematical literature in the limit of a large mass supported
in the exterior of a fixed open set [ALMR19, BBZ22, BCLS19, MOP20, SV19]. In this
limit, one observes the convergence to the Dirac operator on a domain with infinite mass
boundary conditions, whose spectral properties are studied in many recent contributions (see,
e.g., [ABLO21, BLRS23, BFSV17, BK22, LO23]). The asymptotic analysis we perform in
this paper concerns a significantly different situation, where not only the mass is changing,
but also the support of the mass is varying.

In the present paper, we will consider the two-dimensional Dirac operator
Dε = −i(σ1∂1 + σ2∂2) + mεσ3

acting in L2(R2;C2) on the domain H1(R2;C2), where σj are the Pauli matrices, and mε

(“mass”) is a piecewise-constant non-negative function supported on small pairwise disjoint
inclusions Dk,ε, k ∈ Z2, distributed along an ε-periodic square lattice, i.e., each cell of the
lattice contains precisely one inclusion Dk,ε, see Figure 2.1 below. Hereinafter, we assume
that the units are chosen in such a way that the speed of light and reduced Planck’s constant
are equal to 1. We will address the homogenization of this operator in the limit when the
period ε of the lattice and the outer radii dk,ε of these inclusions tend to zero (with the same
or with different rates), and the values mk,ε of the mass mε on Dk,ε are appropriately scaled.

In short, the main result of the present paper is as follows: under appropriately chosen
masses mk,ε, the operator Dε converges as ε → 0 to the Dirac operator D with constant
effective mass m⋆, which is expressed in terms of the geometry of the problem. The conver-
gence is established in the norm resolvent sense, and the estimate on the convergence rate is
derived. We impose rather general assumptions on the shapes of the inclusions Dk,ε: after
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being upscaled to the domains with unit outer radius, they have to satisfy a uniform with
respect to ε and k trace inequality, while their inner radii and the smallest non-zero Neumann
eigenvalues have to be bounded away from zero uniformly in ε and k. Examples obeying these
assumptions will be discussed. The outer radii dk,ε of Dk,ε are allowed to be of a different
order with respect to ε; this lack of uniformity in the sizes of inclusions is compensated by
the choice of mk,ε. The only restriction we impose reads

lim
ε→0

ε2

dε

(
ln
(

ε

dε

))1/2
= 0, where dε := inf

k
dk,ε, (1.1)

that is the outer radii of the inclusions cannot tend to zero too fast.
The counterpart problem for scalar Schrödinger operators was studied by Brillard [B88]. In

that work, the author considered the operator −∆Ω + hεχε in L2(Ω), where Ω ⊂ Rn, n ≥ 2 is
a bounded domain, −∆Ω is the Dirichlet Laplacian on Ω, hε is a positive constant, and χε is
the indicator function of the union of ε-periodically distributed identical domains of the form
Dk,ε

∼= dεD, where 0 < dε ≤ Cε and D ⊂ Rn is a fixed open set. It was shown for n ≥ 3 that
if limε→0 εn/(n−2)d−1

ε = 0 and h⋆ := limε→0 hε|Dk,ε|ε−n > 0, then for each f ∈ L2(Ω) one has
(−∆Ω + hεχε)−1f → (−∆Ω + h⋆)−1f weakly in H1

0 (Ω) as ε → 0 (1.2)

(due to the Rellich theorem, the above convergence holds also in the strong sense in L2(Ω)). If
dε ∼ εn/(n−2), the result remains qualitatively the same: the limiting operator is a Schrödinger
operator with a constant potential, but now this potential equals the minimimum of some
capacity-type functional whose form depends on how hε scales. The proofs are based on epi-
convergence methods. For n = 2 the convergence result in [B88] is formulated only through
certain implicit assumption (no explicit restrictions similar to (1.1) were given). However,
tracing the proofs in [B88], one might conclude that (1.2) holds for n = 2 provided

ε2| ln dε| → 0 as ε → 0. (1.3)

The scalings dε ∼ εn/(n−2) (n ≥ 3) and | ln dε|−1 ∼ ε2 (n = 2) arise in homogenization of
Dirichlet and Robin Laplacians in domains with holes [B24, CM97, K89, KP22, KP18, MK64]:
if the holes are scaled as above, in the limit one arrives to a Schrödinger operator with a
constant potential known in homogenization community by its nickname “strange term”.

As we see, our assumption (1.1) is more restrictive than (1.3). It remains an open question
whether the restriction (1.1) is of a technical nature (we will come to it when estimating the
H1(R2;C2)-norm by the graph norm associated with Dε), or it has a principle significance, so
that for smaller dε one has qualitatively different limiting behavior of the operator Dε.

The main difficulty when inspecting homogenization of a Dirac operator is connected with
the fact that it is an operator of the first order and is not semibounded, while the known
methods of homogenization theory are designed primarily to deal with even order below
bounded differential operators and based on them evolution equations, see, e.g., the mono-
graphs [BLP11, CD99, MK06, ZKO94]. For operators not falling into these standard frame-
works one needs to invent ad-hoc methods. As a result, so far there exist only a couple of
works devoted to homogenization of Dirac operators.

In [K13] the author addressed homogenization of the two-dimensional Dirac operator with
a constant mass and a periodic magnetic potential Aε being either of the form Aε(x) =
A(xε−1) (non-singular case) or Aε(x) = ε−1A(xε−1) (singular case), where A is a real periodic
divergence-free vector-valued function with zero average over the period cell. For both cases
the effective operators were found, in the non-singular case it coincides with a free Dirac
operator. The convergence is established in the norm resolvent sense with order-sharp error
estimates. The scheme of the proof in [K13] is as follows: first the solution to the underlying
resolvent equation is split into two scalar components, each of which solves the resolvent
equation for certain second order operators; then for each component the operator-theoretic
approach by Birman and Suslina [BS04, BS06, S11] is applied. Actually, the author used the
well-known fact that the square of the two-dimensional magnetic Dirac operator coincides



HOMOGENIZATION OF THE DIRAC OPERATOR WITH POSITION-DEPENDENT MASS 3

with a matrix electromagnetic Schrödinger operator of a special form (the so-called Pauli
operator).

We also mention the article [JL01] concerning homogenization of non-stationary systems
emerging from the one-dimensional non-stationary Dirac equation. Finally, in [AS12] G-
convergence of a three-dimensional Dirac operator with a constant mass and an oscillating
potential, being restricted to the spectral subspaces associated with the eigenvalues in the gap
of the essential spectrum, was investigated.

In the proof of the main theorem we extensively use the abstract convergence result obtained
in Section 3 below. Its main idea is to estimate the absolute value of the difference of the
bilinear forms of the operators Dε and D in terms of graph-norms associated to these operators.
Then, when implementing this abstract result, we combine several functional estimates with
a convenient representation of the quadratic form for the square of the Dirac operator with
piecewise constant mass [BCLS19]. An additional difficulty is caused by the fact that this
quadratic form has boundary terms over ∂Dk,ε (cf. the formula (5.14) below). Apparently, the
proposed method can be extended to homogenization of Dirac operators in three and higher
space dimensions.

2. Setting and the main result
2.1. Geometric setting. Let Y ⊂ R2 be the open unit square centred at the origin. For
k ∈ Z2 we set Yk,ε := εY + εk. Assume that for each ε ∈ (0, ε0] with 0 < ε0 < 1 we are given
with a family of C2,1-smooth (connected) domains {Dk,ε, k ∈ Z2} in R2 satisfying

Dk,ε ⊂ Yk,ε. (2.1)

Further assumptions on Dk,ε will be given below, see (2.3)–(2.6). The above geometrical
configuration is presented in Figure 2.1.

ε

Dk,ε

Yk,ε

Figure 2.1. The union of dark grey sets Dk,ε constitutes the set supporting
the mass.

Let dk,ε > 0 stand for the radius of the smallest disk containing Dk,ε. For simple geometric
reasons, we have the inequality

dk,ε ≤ ε√
2

. (2.2)

The first assumption we impose on Dk,ε reads as follows:
• For fixed ε ∈ (0, ε0] the numbers dk,ε are bounded away from zero uniformly in k, i.e.

∀ ε ∈ (0, ε0] : dε := inf
k∈Z2

dk,ε > 0. (2.3)
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Further assumptions will be formulated in terms of the upscaled sets Dk,ε := d−1
k,εDk,ε. Note

that the radius of the smallest disk containing Dk,ε equals 1. In the following, by ΛN(Ω) > 0
we denote the smallest non-zero eigenvalue of the Neumann Laplacian on a bounded connected
open set Ω ⊂ R2 with Lipschitz boundary. The next assumptions are as follows:
• The inner radii of the sets Dk,ε are bounded away from zero uniformly in ε and k, i.e.

∃ ρ ∈ (0, 1) ∀ ε ∈ (0, ε0] ∀ k ∈ Z2 ∃ xk,ε ∈ Dk,ε :
{
x ∈ R2 : |x − xk,ε| < ρ

}
⊂ Dk,ε. (2.4)

• The operators mapping u ∈ H1(Dk,ε) to its trace on ∂Dk,ε are bounded in the H1 → L2

operator norm uniformly in ε and k, i.e.

∃ Ctr > 0 ∀ ε ∈ (0, ε0] ∀ k ∈ Z2 ∀ u ∈ H1(Dk,ε) : ∥u∥L2(∂Dk,ε) ≤ Ctr∥u∥H1(Dk,ε) (2.5)

(to simplify the presentation, hereinafter we use the same notation for an H1-function on
a domain and for its trace on the boundary of this domain).

• The smallest non-zero Neumann eigenvalues ΛN(Dk,ε) are bounded away from zero uni-
formly in ε and k, i.e.

∃ ΛN > 0 ∀ ε ∈ (0, ε0] ∀ k ∈ Z2 : ΛN(Dk,ε) ≥ ΛN. (2.6)

Evidently, assumptions (2.4)–(2.6) hold if the sets Dk,ε are identical (up to a rigid motion).
While searching for more subtle examples, the main difficulties arise when checking the most
implicit assumptions (2.5) and (2.6). Analysing the standard proof of the trace inequality
∥u∥L2(∂Ω) ≤ C∥u∥H1(Ω) (see, e.g., [E10, §5.5, Theorem 1]), which is based on a local straight-
ening of the boundary of a domain, one can easily show that the assumption (2.5) holds if,
e.g., each Dk,ε possesses a global tubular coordinates for a δ-neighborhood of ∂Dk,ε (with δ
being independent of ε and k) and the curvatures of ∂Dk,ε are bounded uniformly in ε and
k. Next, we discuss three examples aiming to realize the assumption (2.6).

Example 2.1. If Ω ⊂ R2 is a convex domain, then one has the Payne-Weinberger bound
[PW60]

ΛN(Ω) ≥ π2

(diam Ω)2 .

Since the radius of the smallest disk containing Dk,ε is equal to 1, we get diam Dk,ε ≤ 2.
Hence, if the sets Dk,ε are convex, then the assumption (2.6) holds true with ΛN = π2

4 .

Example 2.2. If Ω ⊂ R2 is a smooth domain, which is strictly star-shaped with respect to a
point p ∈ Ω, then one has the following inequality by Bramble and Payne [BP62]:

ΛN(Ω) ≥ Rmin(Ω)h(Ω)
(Rmax(Ω))2[(Rmax(Ω))2 + Rmin(Ω)h(Ω)

] . (2.7)

Here Rmin(Ω) := min
x∈∂Ω

dist(x, p), Rmax(Ω) := max
x∈∂Ω

dist(x, p), h(Ω) := min
x∈∂Ω

⟨x−p, ν(x)⟩R2 with ν

being the outward unit normal to ∂Ω; the strict star-shaped form of Ω implies ⟨x−p, ν(x)⟩R2 >
0. It follows from (2.7) that if the upscaled sets Dk,ε are strictly star-shaped with respect to
some points pk,ε ∈ Dk,ε, moreover, there is ρ > 0 and h > 0 (independent of ε and k) such
that {

x ∈ R2 : |x − pk,ε| < ρ
}

⊂ Dk,ε and min
x∈∂Dk,ε

⟨x − pk,ε, ν(x)⟩R2 ≥ h, (2.8)

then (2.6) holds with ΛN = ρh
32 ; to estimate the denominator in (2.7) we use the inequalities

Rmin(Dk,ε) ≤ Rmax(Dk,ε) ≤ diam Dk,ε ≤ 2, ⟨x − pk,ε, ν(x)⟩R2 |x∈∂Dk,ε
≤ diam Dk,ε ≤ 2.

The second assumption in (2.8) means that the distance from the point pk,ε to any tangential
line to ∂Dk,ε is bounded away from zero uniformly in ε and k.
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Example 2.3. For general domains Ω ⊂ R2 (i.e, neither convex nor star-shaped) one can use,
e.g., the following estimate by Brandolini, Chiacchio, and Trombetti [BCT15, Theorem 1.1]:

ΛN(Ω) ≥ (K(Ω))2ΛD(Ω♯)
2π

, (2.9)

where ΛD(Ω♯) is the smallest eigenvalue of the Dirichlet Laplacian on the disk Ω♯ ⊂ R2

satisfying |Ω♯| = |Ω| (hereinafter the notation |Ω| stands for the area of a domain Ω), and
K(Ω)> 0 is the best isoperimetric constant relative to Ω defined as in [BCT15, Eq. (1.3)].
Since the radius of the smallest ball containing Dk,ε equals 1, then the Dirichlet eigenvalues
ΛD(D♯

k,ε) are bounded from below by the first Dirichlet eigenvalue of the unit disk. Therefore
the assumption (2.6) holds if the best isoperimetric constants K(Dk,ε) are bounded from
below uniformly in ε and k.

2.2. Dirac operator with position-dependent mass and the main result. Let us recall
that the Pauli matrices are defined by

σ1 :=
(

0 1
1 0

)
, σ2 :=

(
0 −i
i 0

)
, σ3 :=

(
1 0
0 −1

)
.

For a vector x = (x1, x2) ∈ R2 we use the the abbreviation σ · x = σ1x1 + σ2x2. Based on this
definition the differential expression σ · ∇ = σ1∂1 + σ2∂2 is well defined. For a fixed m⋆ > 0,
we introduce the numbers

mk,ε := m⋆
|Yk,ε|
|Dk,ε|

= m⋆
ε2

d2
k,ε|Dk,ε|

, ε ∈ (0, ε0], k ∈ Z2. (2.10)

We study the following ε-dependent family of Dirac operators acting in the space L2(R2;C2):

Dεu := −i(σ · ∇)u + mεσ3u, dom Dε := H1(R2;C2).

Here mε is the piecewise constant function being given by

mε :=
∑

k∈Z2

mk,εχ
k,ε

,

where χk,ε stands for the characteristic function of Dk,ε; note that, by virtue of (2.3)–(2.4),
one has mε ∈ L∞(R2) (namely, mε ≤ m⋆ε2

d2
επρ2 ), whence the operator above is well-defined.

The Dirac operator Dε is self-adjoint in the Hilbert space L2(R2;C2) as a bounded pertur-
bation of the self-adjoint free Dirac operator. We would like to address the following question.

What is the limit of Dε as ε → 0 in the norm resolvent sense?

The candidate for the limit is the following Dirac operator with constant mass

Du := −i(σ · ∇)u + m⋆σ3u, dom D := H1(R2;C2).

We prove this convergence under additional assumption on dε. The main result of the present
paper is the following theorem; note that the logarithm ln( ε

dε
) > 0 appearing in this theorem

is positive due to (2.2).

Theorem 2.4. Assume that

lim
ε→0

ε2

dε

(
ln
(

ε

dε

))1/2
= 0. (2.11)

Then Dε converges to D in the norm resolvent sense as ε → 0 and the following bound on the
norm of the difference of their resolvents∥∥(Dε − i)−1 − (D − i)−1∥∥ ≤ C

ε2

dε

(
ln
(

ε

dε

))1/2
(2.12)

holds. The constant C > 0 in (2.12) depends only on ε0, m⋆, ρ, Ctr, and ΛN.
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Applying the above theorem in the special case dk,ε = dε ∼ Cεκ with κ ∈ [1, 2) and C > 0
(for κ = 1 this constant has to be sufficiently small in order to fit (2.1)), we arrive at the rate
of convergence O(ε2−κ| ln ε|1/2) for κ ∈ (1, 2) and the rate of convergence O(ε) for κ = 1.
Our analysis does not cover the situation κ ≥ 2. In the special case dk,ε = dε ∼ Cε2| ln ε|ω
with ω > 1

2 we still get norm resolvent convergence, but the convergence speed is very slow
O(| ln ε|1/2−ω). It remains an open question whether assumption (2.11) is necessary for the
norm resolvent convergence and whether our convergence rate is sharp in ε.

In the above theorem we do not claim dk,ε are of the same order. On the contrary, they
can be absolutely different, e.g. dk,ε = 1

2εκk,ε with some κk,ε ∈ [1,κ], 1 ≤ κ < 2. The main
result is ensured owing to the choice of the masses mk,ε being adjusted according to (2.10).

Our main result implies, in particular, the convergence of spectra. Note that the spec-
trum σ(D) of the operator D is purely absolutely continuous and coincides with the set
R \ (−m⋆, m⋆), whence, in particular, the operator D is invertible, and

σ(D−1) = [−m−1
⋆ , m−1

⋆ ]. (2.13)

Recall that for compact sets X, Y ⊂ C the Hausdorff distance distH(X, Y ) is given by

distH(X, Y ) = max
{

sup
x∈X

inf
y∈Y

|x − y|, sup
y∈Y

inf
x∈X

|y − x|
}

.

We also denote by ηε the right-hand side of the estimate (2.12).

Corollary 2.5. Assume that ε > 0 is sufficiently small in order to have

ηε ≤ 1 − (1 + m2
⋆)−1/2

1 + (1 + m2
⋆)1/2 . (2.14)

Then the operator Dε is invertible with a bounded inverse, and one has the estimate

distH
(
σ(D−1

ε ), [−m−1
⋆ , m−1

⋆ ]
)

≤ C̃
ε2

dε

(
ln
(

ε

dε

))1/2
, C̃ > 0 is a constant. (2.15)

Proof. Using the triangle inequality, the estimate (2.12) and the fact that for any normal
operator T and λ ∈ ρ(T) one has ∥(T − λ)−1∥ = (dist (λ, σ(T)))−1, we obtain

dist (0, σ(Dε)) ≥ dist (i, σ(Dε)) − dist (i, 0) = ∥(Dε − i)−1∥−1 − 1 ≥
(
ηε + ∥(D − i)−1∥

)−1
− 1

=
(
ηε + (dist (i, σ(D)))−1

)−1
− 1 =

(
ηε + (1 + m2

⋆)−1/2
)−1

− 1

≥ ((1 + m2
⋆)1/2 − 1)/2 (2.16)

(the penultimate step in (2.16) relies on σ(D) = R\(−m⋆, m⋆), while the last inequality follows
from the assumption (2.14)). By (2.16), the operator D−1

ε is well defined and bounded.
For normal bounded operators S, T in the Hilbert space G one has by [HN99, Lemma A.1]

the inequality distH(σ(S), σ(T)) ≤ ∥S − T∥. Applying it for S = D−1
ε , T = D−1 we get

distH
(
σ(D−1

ε ), σ(D−1)
)

≤ ∥D−1
ε − D−1∥. (2.17)

Then the desired estimate (2.15) follows from (2.12), (2.13), (2.17), the identity

D−1
ε − D−1 = −

(
D−1

ε + i
) (

(Dε − i)−1 − (D − i)−1
) (

D−1 + i
)

,

and the fact that, by (2.16), the norms ∥D−1
ε ∥ are uniformly bounded with respect to ε. □

Remark 2.6. In the special case when the mass mε is the indicator function of the union of
ε-periodically distributed identical domains Dk,ε

∼= εD, where D ⊂ Y is a fixed C2,1-smooth
(connected) open set, we have dε ∼ Cε and we get from Theorem 2.4 that∥∥(Dε − i)−1 − (D − i)−1∥∥ = O(ε), ε → 0.
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In this setting, one can also check that D2
ε is a special case of the second-order matrix elliptic

operator considered in [S11], thanks to very weak regularity assumptions on the coefficients
there. It follows then from [S11, Theorem 9.2] that∥∥(D2

ε + 1)−1 − (D2 + 1)−1∥∥ = O(ε), ε → 0.

The general scheme in [S11] does not apply to the non-periodic case and also to the case when
dε = o(ε) considered in the present paper.

The rest of the paper is organized as follows. In Section 3 we will present the above
mentioned abstract result. In Section 4 we will prove several auxiliary functional estimates.
The proof of the main result will be carried out in Section 5.

3. Abstract scheme
In this section, we obtain an abstract result, which is useful in studying convergence of

not necessarily semibounded self-adjoint operators acting in a Hilbert spaces. Other abstract
results for studying resolvent convergence of unbounded operators in Hilbert spaces can be
found, e.g., in the monographs [P12, RS80, W00]. Our abstract condition is close to the
approach developed by Post in [P06, P12]. Similar strategy for the proof of the norm resol-
vent convergence (applied in a particular setting of Dirac operators) is implicitly used, e.g.,
in [DM24, Proof of Theorem 1.4]. However, we are not aware of any source, where the
abstract condition for the norm resolvent convergence as in the theorem below is contained,
and we believe that this abstract formulation can be useful in other applications.
Theorem 3.1. Let D and D̃ be self-adjoint operators in a Hilbert space H. Assume also that
for all u ∈ dom D and all v ∈ dom D̃∣∣(Du, v)H − (u, D̃v)H

∣∣ ≤ c
(
a∥u∥2

H + ∥Du∥2
H

)1/2 (
b∥v∥2

H + ∥D̃v∥2
H

)1/2
, (3.1)

with some a, b, c > 0. Then∥∥(D̃ − i)−1 − (D − i)−1∥∥ ≤ c
√

(a + 1)(b + 1).

Proof. Let us introduce a shorthand notation for the resolvents: R := (D − i)−1 and R̃ :=
(D̃ − i)−1. Let f, g ∈ H be arbitrary and define u := Rf and v := R̃∗g. We find a convenient
representation for the bilinear form of the operator R̃ − R:(

(R̃ − R)f, g
)

H = (f, R̃∗g)H − (Rf, g)H

= ((D − i)u, v)H − (u, (D̃ + i)v)H

= (Du, v)H − (u, D̃v)H,

From this formula we get using (3.1)∣∣((R̃ − R)f, g
)

H
∣∣ ≤ c

(
a∥Rf∥2

H + ∥DRf∥2
H

)1/2 (
b∥R̃∗g∥2

H + ∥D̃R̃∗g∥2
H

)1/2

≤ c
√

(a + 1)(b + 1)∥f∥H∥g∥H, (3.2)

from which the desired estimate immediately follows. In the last step of (3.2), we used the
estimates ∥(T ± i)−1∥ ≤ 1 and ∥T(T ± i)−1∥ ≤ 1 holding for any self-adjoint operator T in a
Hilbert space. These estimates are direct consequences of the spectral theorem. □

4. Auxiliary estimates
In this section we collect several functional estimates which will be employed in the next

section for the proof of Theorem 2.4. Actually, we will make use only of the bounds (4.2),
(4.4), (4.6), the equalities (4.1), (4.3), (4.5) and Lemmata 4.5, 4.6, while (4.7), (4.8) and
Lemmata 4.1–4.4 are required only for the proof of Lemmata 4.5, 4.6.
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4.1. Estimates for principal Neumann, Robin, and Steklov-type eigenvalues. In
the first subsection we recall some known properties of the Neumann, Robin and Steklov-type
eigenvalues, and also discuss related inequalities.

Let Ω ⊂ R2 be a bounded connected open set with Lipschitz boundary. Recall that by
ΛN(Ω) > 0 we denote the first non-zero eigenvalue of the Neumann Laplacian on Ω. This
eigenvalue admits the variational characterisation

ΛN(Ω) = inf
f∈H1(Ω)\{0}
(f,1)L2(Ω)=0

∥∇f∥2
L2(Ω)

∥f∥2
L2(Ω)

, (4.1)

where 1 denotes the characteristic function of Ω.
Along with ΛN(Ω) we also introduce the number ΛS(Ω) > 0 via

ΛS(Ω) = inf
f∈H1(Ω)\{0}
(f,1)L2(Ω)=0

∥∇f∥2
L2(Ω)

∥f∥2
L2(∂Ω)

.

It is known that ΛS(Ω) is the smallest non-zero eigenvalue of a Steklov-type spectral problem
on Ω specified, e.g., in [GS08, Section 2] in a slightly different notation. We prefer to use
the term ‘Steklov-type’, because this spectral problem differs from the conventional Steklov
spectral problem [GP17]. From (4.1) and the above definition of ΛS(Ω) one can easily infer
the inequality

ΛS(Ω) ≥ 1
(Ctr(Ω))2(1 + (ΛN(Ω))−1) . (4.2)

Hereinafter, the notation Ctr(Ω) stands for the norm of the trace operator H1(Ω) → L2(∂Ω).
Finally, for γ ∈ R we define the following number Λγ

R(Ω):

Λγ
R(Ω) = inf

f∈H1(Ω)\{0}

∥∇f∥2
L2(Ω) + γ∥f∥2

L2(∂Ω)
∥f∥2

L2(Ω)
, (4.3)

which is nothing, but the smallest eigenvalue of the Laplacian on Ω subject to the Robin
conditions ∂f

∂ν + γf = 0 on ∂Ω with ν being the unit normal pointing outwards of Ω. One has
the following estimate [GS08, Eq. 15] (keep in mind, that in [GS08] Steklov-type eigenvalues
are defined in a different way, below we reformulate their result using our notations):

Λγ
R(Ω) ≥ γ

|∂Ω|
|Ω|

(
1 −

√
− γ

ΛS(Ω)

)−2

provided − ΛS(Ω) < γ < 0. (4.4)

We are particularly interested in how the eigenvalues ΛN(Ω) and Λγ
R(Ω) are influenced

under a domain rescaling. Let δ > 0 and the set Ωδ be congruent to δΩ. It follows easily from
(4.1) and (4.3) that

ΛN(Ωδ) = δ−2ΛN(Ω), Λγ
R(Ωδ) = δ−2Λδγ

R (Ω). (4.5)

Equalities (4.5) imply the estimates

∀ f ∈ H1(Ωδ), (f,1)L2(Ωδ) = 0: ∥f∥2
L2(Ωδ) ≤ (ΛN(Ω))−1δ2∥∇f∥2

L2(Ωδ), (4.6)

∀f ∈ H1(Ωδ) : ∥f∥2
L2(Ωδ) ≤(Λ1

R(Ω))−1
(
δ∥f∥2

L2(∂Ωδ) + δ2∥∇f∥2
L2(Ωδ)

)
. (4.7)

The last inequality we introduce in this subsection is as follows,

∀f ∈ H1(Ωδ) : ∥f∥2
L2(∂Ωδ) ≤ (Ctr(Ω))2

(
δ−1∥f∥2

L2(Ωδ) + δ∥∇f∥2
L2(Ωδ)

)
. (4.8)

The bound (4.8) follows easily from the inequality ∥f∥2
L2(∂Ω) ≤ (Ctr(Ω))2(∥f∥2

L2(Ω)+∥∇f∥2
L2(Ω)

)
and the relation Ωδ

∼= δΩ.
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4.2. Functional estimates. Now, we proceed to the estimates being directly related to our
problem. Note that all the functions f below are scalar.

In the following, by ⟨f⟩Ω we will denote the mean value of a function f in an open bounded
set Ω ⊂ R2, i.e.

⟨f⟩Ω = |Ω|−1
∫

Ω
f(x) dx,

where as before |Ω| stands for the area of Ω. We will keep the same notation for the mean
value of a function f on a closed curve S ⊂ R2, i.e.

⟨f⟩S = |S|−1
∫

S
f(x) dσ,

where dσ is the density of the surface measure on S, |S| =
∫

S dσ stands for the length of S.
We also introduce several sets:

• B is the unit disk centred at the origin.
• Bk,ε is the smallest disk containing Dk,ε (i.e. Bk,ε is congruent to the set dk,εB).
• Rk,ε is the disk of the radius ε being concentric with Bk,ε.

• Ỹk,ε = 3εY + εk, i.e. Ỹk,ε is obtained from Yk,ε by a homothety with the center at εk
and the ratio 3.

Taking into account (2.2), we conclude (cf. Figure 4.1):

Dk,ε ⊂ Bk,ε ⊂ Rk,ε ⊂ Ỹk,ε. (4.9)

3εε
2ε2dk,ε

Yk,ε
Ỹk,ε

Rk,ε

Bk,ε Dk,ε

Figure 4.1. The domains being involved in the proof of the main result of this section.

Lemma 4.1. One has:

∀ f ∈ H1(Bk,ε) :
∣∣⟨f⟩∂Bk,ε

− ⟨f⟩Bk,ε

∣∣2 ≤ (Ctr(B))2((ΛN(B))−1 + 1)
2π

∥∇f∥2
L2(Bk,ε), (4.10)

∀ f ∈ H1(Rk,ε) :
∣∣⟨f⟩∂Rk,ε

− ⟨f⟩Rk,ε

∣∣2 ≤ (Ctr(B))2((ΛN(B))−1 + 1)
2π

∥∇f∥2
L2(Rk,ε). (4.11)

Proof. Using (4.6), (4.8), we obtain

∀f ∈ H1(Bk,ε) : ∥f − ⟨f⟩Bk,ε
∥2

L2(Bk,ε) ≤ (ΛN(B))−1d2
k,ε∥∇f∥2

L2(Bk,ε), (4.12)

∀f ∈ H1(Bk,ε) : ∥f∥2
L2(∂Bk,ε) ≤ (Ctr(B))2

(
d−1

k,ε∥f∥2
L2(Bk,ε) + dk,ε∥∇f∥2

L2(Bk,ε)

)
. (4.13)
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Combining (4.13), (4.12) and the Cauchy-Schwarz inequality we arrive at the estimate (4.10):∣∣⟨f⟩∂Bk,ε
− ⟨f⟩Bk,ε

∣∣2 =
∣∣⟨f − ⟨f⟩Bk,ε

⟩∂Bk,ε

∣∣2 ≤ (2πdk,ε)−1∥f − ⟨f⟩Bk,ε
∥2

L2(∂Bk,ε)

≤ (Ctr(B))2(2πdk,ε)−1
(
d−1

k,ε∥f − ⟨f⟩Bk,ε
∥2

L2(Bk,ε) + dk,ε∥∇f∥2
L2(Bk,ε)

)
≤ (Ctr(B))2((ΛN(B))−1 + 1)(2π)−1∥∇f∥2

L2(Bk,ε).

The proof of the estimate (4.11) is similar. □

Lemma 4.2. One has:

∀ f ∈ H1(Bk,ε) :
∣∣⟨f⟩Dk,ε

− ⟨f⟩Bk,ε

∣∣2 ≤ 1
ΛN(B)πρ2 ∥∇f∥2

L2(Bk,ε). (4.14)

Proof. Since Bk,ε
∼= dk,εB, one has by (4.6):

∀ f ∈ H1(Bk,ε) : ∥f − ⟨f⟩Bk,ε
∥2

L2(Bk,ε) ≤ (ΛN(B))−1d2
k,ε∥∇f∥2

L2(Bk,ε). (4.15)

Using (4.15) and the Cauchy-Schwarz inequality, we obtain the desired estimate (4.14):∣∣⟨f⟩Dk,ε
− ⟨f⟩Bk,ε

∣∣2 =
∣∣⟨f − ⟨f⟩Bk,ε

⟩Dk,ε

∣∣2 ≤ |Dk,ε|−1∥f − ⟨f⟩Bk,ε
∥2

L2(Dk,ε)

≤ |Dk,ε|−1∥f − ⟨f⟩Bk,ε
∥2

L2(Bk,ε) ≤ (ΛN(B))−1|Dk,ε|−1d2
k,ε∥∇f∥2

L2(Bk,ε)

= (ΛN(B))−1|Dk,ε|−1∥∇f∥2
L2(Bk,ε) ≤ (ΛN(B)πρ2)−1∥∇f∥2

L2(Bk,ε),

where in the last step we used (2.4). □

Lemma 4.3. One has:
∀ f ∈ H1(Rk,ε \ Bk,ε) :

∣∣⟨f⟩∂Rk,ε
− ⟨f⟩∂Bk,ε

∣∣2 ≤ (2π)−1· ln
(

ε
dk,ε

)
· ∥∇f∥2

L2(Rk,ε\Bk,ε). (4.16)

Proof. Evidently, it is enough to prove (4.16) for f ∈ C1(Rk,ε \ Bk,ε). We introduce the polar
coordinate system (r, ϕ) with the pole at the center of Bk,ε; here r > 0 stands for the distance
to the pole and ϕ ∈ [0, 2π) is the angular coordinate. One has

⟨f⟩∂Rk,ε
− ⟨f⟩∂Bk,ε

= (2π)−1
(∫ 2π

0
f(ε, ϕ) dϕ −

∫ 2π

0
f(dk,ε, ϕ) dϕ

)
= (2π)−1

∫ 2π

0

∫ ε

dk,ε

∂f

∂r
(τ, ϕ) dτ dϕ,

whence, using the Cauchy-Schwarz inequality, we deduce∣∣⟨f⟩∂Rk,ε
− ⟨f⟩∂Bk,ε

∣∣2 ≤ (2π)−1
∫ 2π

0

(∫ ε

dk,ε

∣∣∣∣∂f

∂r
(τ, ϕ)

∣∣∣∣2 τ dτ

)
·
(∫ ε

dk,ε

τ−1 dτ

)
dϕ

≤ (2π)−1∥∇f∥2
L2(Rk,ε\Bk,ε) ln

(
ε

dk,ε

)
. □

Lemma 4.4. One has:

∀ f ∈ H1(Ỹk,ε) :
∣∣⟨f⟩Rk,ε

− ⟨f⟩
Ỹk,ε

∣∣2 ≤ 9
ΛN(Y)π ∥∇f∥2

L2(Ỹk,ε), (4.17)

∀ f ∈ H1(Ỹk,ε) :
∣∣⟨f⟩Yk,ε

− ⟨f⟩
Ỹk,ε

∣∣2 ≤ 9
ΛN(Y)∥∇f∥2

L2(Ỹk,ε). (4.18)

Proof. Using (4.6), Ỹk,ε
∼= 3Y, and the Cauchy-Schwarz inequality, we obtain∣∣⟨f⟩Rk,ε

− ⟨f⟩
Ỹk,ε

∣∣2 =
∣∣⟨f − ⟨f⟩

Ỹk,ε
⟩Rk,ε

∣∣2 ≤ |Rk,ε|−1∥f − ⟨f⟩
Ỹk,ε

∥2
L2(Rk,ε)

≤ |Rk,ε|−1∥f − ⟨f⟩
Ỹk,ε

∥2
L2(Ỹk,ε) ≤ 9|Rk,ε|−1(ΛN(Y))−1ε2∥∇f∥2

L2(Ỹk,ε)

= 9π−1(ΛN(Y))−1∥∇f∥2
L2(Ỹk,ε).

The proof of (4.18) is similar. □
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Now, we are in position to formulate the first key estimate.

Lemma 4.5. One has:

∀ f ∈ H1(Ỹk,ε) :
∣∣⟨f⟩Yk,ε

− ⟨f⟩Dk,ε

∣∣2 ≤ C1 ln
(

ε
dk,ε

)
∥∇f∥2

L2(Ỹk,ε), (4.19)

where the constant C1 > 0 is given by

C1 = 12
ln 2

(
1

ΛN(B)πρ2 + (Ctr(B))2((ΛN(B))−1 + 1)
π

+ 9
ΛN(Y)π + 9

ΛN(Y)

)
+ 3

π
. (4.20)

Proof. One has:∣∣⟨f⟩Yk,ε
− ⟨f⟩Dk,ε

∣∣2 ≤ 6
(∣∣⟨f⟩Yk,ε

− ⟨f⟩
Ỹk,ε

∣∣2 +
∣∣⟨f⟩

Ỹk,ε
− ⟨f⟩Rk,ε

∣∣2
+
∣∣⟨f⟩Rk,ε

− ⟨f⟩∂Rk,ε

∣∣2 +
∣∣⟨f⟩∂Rk,ε

− ⟨f⟩∂Bk,ε

∣∣2
+
∣∣⟨f⟩∂Bk,ε

− ⟨f⟩Bk,ε

∣∣2 +
∣∣⟨f⟩Bk,ε

− ⟨f⟩Dk,ε

∣∣2) (4.21)

Combining Lemmata 4.1–4.4 and taking into account (4.9) and ln(ε/dk,ε) ≥ 1
2 ln 2 (cf. (2.2)),

we infer from (4.21) the desired estimate (4.19). □

The second key estimate is given below.

Lemma 4.6. One has

∀ f ∈H1(Rk,ε) : ∥f∥2
L2(Dk,ε) ≤ C2

{(
dk,ε

ε

)2
∥f∥2

L2(Rk,ε)+d2
k,ε ln

(
ε

dk,ε

)
∥∇f∥2

L2(Rk,ε)

}
, (4.22)

where

C2 =
max

{
2(Ctr(B))2, 2 + 2(ln 2)−1(1 + 2(Ctr(B))2)

}
Λ1

R(B)
. (4.23)

Proof. Using the estimate (4.7) and the inclusion Dk,ε ⊂ Bk,ε we get:

∀ f ∈ H1(Bk,ε) : ∥f∥2
L2(Dk,ε) ≤ (Λ1

R(B))−1
(
dk,ε∥f∥2

L2(∂Bk,ε) + d2
k,ε∥∇f∥2

L2(Bk,ε)

)
. (4.24)

Next, we prove the inequality

∀f ∈H1(Rk,ε\ Bk,ε) : ∥f∥2
L2(∂Bk,ε) ≤2

{
dk,ε

ε
∥f∥2

L2(∂Rk,ε)+dk,ε ln
(

ε
dk,ε

)
∥∇f∥2

L2(Rk,ε\Bk,ε)

}
.

(4.25)
Evidently, it is enough to demonstrate (4.25) for f ∈ C1(Rk,ε\Bk,ε). We introduce the polar
coordinate system (r, ϕ) ∈ [0, ∞) × [0, 2π) with the pole at the center of Bk,ε. One has

∣∣f(dk,ε, ϕ)
∣∣2 =

∣∣∣∣∣f(ε, ϕ) −
∫ ε

dk,ε

∂f

∂r
(τ, ϕ) dτ

∣∣∣∣∣
2

≤ 2
∣∣f(ε, ϕ)

∣∣2 + 2
(∫ ε

dk,ε

∣∣∣∣∂f

∂r
(τ, ϕ)

∣∣∣∣2 τ dτ

)
·
(∫ ε

dk,ε

τ−1 dτ

)
≤ 2

∣∣f(ε, ϕ)
∣∣2 + 2 ln

(
ε

dk,ε

) ∫ ε

dk,ε

|∇f(τ, ϕ)|2 τ dτ. (4.26)

Integrating (4.26) over ϕ and then multiplying by dk,ε, we arrive at (4.25).
Finally, using the estimate (4.8), we obtain

∀ f ∈ H1(Rk,ε) : ∥f∥2
L2(∂Rk,ε) ≤ (Ctr(B))2

(
ε−1∥f∥2

L2(Rk,ε) + ε∥∇f∥2
L2(Rk,ε)

)
. (4.27)

The desired estimate (4.22) follows from (4.24), (4.25), (4.27) and ln(ε/dk,ε) ≥ 1
2 ln 2. □
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5. Proof of Theorem 2.4
In the following, we will use for an open set Ω ⊂ R2 the notation ∥ · ∥L2(Ω) for the norms in

L2(Ω;C), L2(Ω;C2) and L2(Ω;C2×2) as no confusion can arise. The respective inner products
are linear in the first entry and will be denoted by (·, ·)L2(Ω). Thus, if u = (u1, u2) ∈ L2(Ω;C2)
(that is ∇u ∈ L2(Ω;C2×2)), then we have

∥u∥2
L2(Ω) = ∥u1∥2

L2(Ω) + ∥u2∥2
L2(Ω),

∥∇u∥2
L2(Ω) = ∥∇u1∥2

L2(Ω) + ∥∇u2∥2
L2(Ω)

= ∥∂1u1∥2
L2(Ω) + ∥∂2u1∥2

L2(Ω) + ∥∂1u2∥2
L2(Ω) + ∥∂2u2∥2

L2(Ω).

The same convention will be applied to H1(Ω;C) and H1(Ω;C2). The norm in the Sobolev
spaces H1(Ω;C) and H1(Ω;C2) is defined via the identity ∥u∥2

H1(Ω) := ∥∇u∥2
L2(Ω) + ∥u∥2

L2(Ω).
By the abstract scheme provided in Section 3 it suffices to obtain a suitable upper bound

on the absolute value of

sε[u, v] := (Du, v)L2(R2) − (u, Dεv)L2(R2),

valid for any u, v ∈ H1(R2;C2). Using the equality (i(σ · ∇)u, v)L2(R2) = (u, i(σ · ∇)v)L2(R2)
and the definition of the matrix σ3 we can express sε[u, v] as

sε[u, v]=
∑

k∈Z2

(
m⋆

∫
Yk,ε

⟨σ3u(x), v(x)⟩C2 dx −
∫

Dk,ε

mk,ε⟨u(x), σ3v(x)⟩C2 dx

)

=
∑

k∈Z2

(
m⋆

∫
Yk,ε

(
u1(x)v1(x) − u2(x)v2(x)

)
dx −

∫
Dk,ε

mk,ε

(
u1(x)v1(x) − u2(x)v2(x)

)
dx

)
,

whence, we get by triangle inequality

|sε[u, v]| ≤
2∑

j=1

∣∣∣∣∣∣m⋆

∑
k∈Z2

∫
Yk,ε

uj(x)vj(x) dx −
∑

k∈Z2

∫
Dk,ε

mk,εuj(x)vj(x) dx

∣∣∣∣∣∣ , (5.1)

where we use the convention that u = (u1, u2) and v = (v1, v2). We will split the rest of the
proof into two steps.

Step 1: Estimates in terms of H1-norms. Let f, g ∈ H1(R2) be arbitrary scalar functions.
For any k ∈ Z2, there holds∣∣∣∣∣
∫

Dk,ε

f(x)g(x) dx − ⟨f⟩Dk,ε
⟨g⟩Dk,ε

|Dk,ε|
∣∣∣∣∣

=
∣∣∣∣∣
∫

Dk,ε

(
f(x) − ⟨f⟩Dk,ε

) (
g(x) − ⟨g⟩Dk,ε

)
dx

∣∣∣∣∣
≤ ∥f − ⟨f⟩Dk,ε

∥L2(Dk,ε)∥g − ⟨g⟩Dk,ε
∥L2(Dk,ε) ≤ Λ−1

N d2
k,ε∥∇f∥L2(Dk,ε)∥∇g∥L2(Dk,ε), (5.2)

where in the last estimate we used the bound (4.6) and the assumption (2.6). Analogously,
we obtain for any k ∈ Z2 that∣∣∣∣∣

∫
Yk,ε

f(x)g(x) dx − ⟨f⟩Yk,ε
⟨g⟩Yk,ε

|Yk,ε|
∣∣∣∣∣ ≤ (ΛN(Y))−1ε2∥∇f∥L2(Yk,ε)∥∇g∥L2(Yk,ε). (5.3)

Now, using (5.2), (5.3), the Cauchy-Schwarz inequality in ℓ2(Z2) and

mk,εd2
k,ε = m⋆ε2

|Dk,ε|
≤ m⋆ε2

πρ2 (5.4)
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(the above inequality follows from (2.4)), we derive from (5.1):

∣∣sε[u, v]
∣∣ ≤

2∑
j=1

∣∣∣∣∣∣
∑

k∈Z2

(
mk,ε⟨uj⟩Dk,ε

⟨vj⟩Dk,ε
|Dk,ε| − m⋆⟨uj⟩Yk,ε

⟨vj⟩Yk,ε
|Yk,ε|

)∣∣∣∣∣∣
+ ε2m⋆

( 1
ΛNπρ2 + 1

ΛN(Y)

) 2∑
j=1

∥∇uj∥L2(R2)∥∇vj∥L2(R2). (5.5)

Our next aim is to estimate the expression∑
k∈Z2

(
mk,ε⟨f⟩Dk,ε

⟨g⟩Dk,ε
|Dk,ε| − m⋆⟨f⟩Yk,ε

⟨g⟩Yk,ε
|Yk,ε|

)
,

where f, g ∈ H1(R2) are arbitrary scalar functions. One has:∣∣∣∣∣∣
∑

k∈Z2

(
mk,ε⟨f⟩Dk,ε

⟨g⟩Dk,ε
|Dk,ε| − m⋆⟨f⟩Yk,ε

⟨g⟩Yk,ε
|Yk,ε|

)∣∣∣∣∣∣
=
∣∣∣∣ ∑

k∈Z2

(
mk,ε⟨f⟩Yk,ε

⟨g⟩Yk,ε
|Dk,ε| − mk,ε⟨f⟩Yk,ε

⟨g⟩Yk,ε
|Dk,ε|

+ mk,ε⟨f⟩Dk,ε
⟨g⟩Yk,ε

|Dk,ε| − mk,ε⟨f⟩Dk,ε
⟨g⟩Yk,ε

|Dk,ε|

+ mk,ε⟨f⟩Dk,ε
⟨g⟩Dk,ε

|Dk,ε| − m⋆⟨f⟩Yk,ε
⟨g⟩Yk,ε

|Yk,ε|
)∣∣∣∣

≤

∣∣∣∣∣∣m⋆ε2 ∑
k∈Z2

⟨f⟩Dk,ε

(
⟨g⟩Dk,ε

− ⟨g⟩Yk,ε

)∣∣∣∣∣∣︸ ︷︷ ︸
=:Qε

1

+

∣∣∣∣∣∣m⋆ε2 ∑
k∈Z2

(
⟨f⟩Dk,ε

− ⟨f⟩Yk,ε

)
⟨g⟩Yk,ε

∣∣∣∣∣∣︸ ︷︷ ︸
=:Qε

2

,

where we used in the derivation of the above bound that mk,ε|Dk,ε| = m⋆|Yk,ε| = m⋆ε2,
thanks to which, in particular, the first and the last terms cancelled in the second step of the
computation. We estimate the term Qε

1 by the Cauchy-Schwarz inequality:

|Qε
1| ≤ m⋆ε2

∑
k∈Z2

∣∣⟨g⟩Yk,ε
− ⟨g⟩Dk,ε

∣∣21/2

·

∑
k∈Z2

|⟨f⟩Dk,ε
|2
1/2

.

By Lemma 4.5 we get that for any k ∈ Z2∑
k∈Z2

∣∣⟨g⟩Yk,ε
− ⟨g⟩Dk,ε

∣∣2 ≤ C1 ln
(

ε
dε

) ∑
k∈Z2

∥∇g∥2
L2(Ỹk,ε) (5.6)

with C1 > 0 defined by (4.20). Using Lemma 4.6, assumption (2.4) and the Cauchy-Schwarz
inequality we get the following bound∑

k∈Z2

|⟨f⟩Dk,ε
|2 ≤ |Dk,ε|−1∥f∥2

L2(Dk,ε)

≤
∑

k∈Z2

C2
|Dk,ε|

{
ε−2∥f∥2

L2(Rk,ε) + ln
(

ε
dk,ε

)
∥∇f∥2

L2(Rk,ε)

}
≤ C2

πρ2

∑
k∈Z2

{
ε−2∥f∥2

L2(Rk,ε) + ln
(

ε
dε

)
∥∇f∥2

L2(Rk,ε)

}
, (5.7)

where C2 > 0 is given in (4.23). Finally, we observe that

∀ h ∈ L2(R2) :
∑

k∈Z2

∥h∥2
L2(Rk,ε) ≤

∑
k∈Z2

∥h∥2
L2(Ỹk,ε) = 9

∑
k∈Z2

∥h∥2
L2(Yk,ε) = 9∥h∥2

L2(R2). (5.8)
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It follows easily from (2.11) that limε→0 ε2 ln(ε/dε) = 0. Assuming further that ε is sufficiently
small in order to have ln(ε/dε) ≤ ε−2, we conclude from (5.6)–(5.8) that

|Qε
1| ≤ 9m⋆

√
C1C2
πρ2 ε

(
ln
(

ε
dε

))1/2
∥∇g∥L2(R2)∥f∥H1(R2). (5.9)

Analogously, we find that

|Qε
2| ≤ 3m⋆

√
C1ε

(
ln
(

ε
dε

))1/2
∥∇f∥L2(R2)∥g∥L2(R2). (5.10)

As a consequence of the estimates (5.5), (5.9), (5.10) and ln(ε/dk,ε) ≥ 1
2 ln 2 (cf. (2.2)), we

end up with the bound∣∣sε[u, v]
∣∣ ≤ C3ε

(
ln
(

ε
dε

))1/2
∥u∥H1(R2)∥v∥H1(R2), ∀ u, v ∈ H1(R2;C2), (5.11)

with the constant C3 > 0 being given by

C3 = 18m⋆

√
C1C2
πρ2 + 6m⋆

√
C1 + 2(1

2 ln 2)−1/2m⋆

( 1
ΛNπρ2 + 1

ΛN(Y)

)
, (5.12)

where C1, C2 are defined by (4.20), (4.23).

Step 2: Estimate in terms of graph norms. To apply Theorem 3.1 we need to bound
H1-norms of u and v in (5.11) in terms of graph norms associated with operators D and Dε.

For any u ∈ H1(R2;C2) one can easily check via integration by parts that

∥Du∥2
L2(R2) = ∥∇u∥2

L2(R2) + m2
⋆∥u∥2

L2(R2),

whence

∥Du∥2
L2(R2) + ∥u∥2

L2(R2) ≥ ∥u∥2
H1(R2). (5.13)

The corresponding graph norm associated with the operator Dε is more subtle. We denote
by νDk,ε

(x) the outer unit normal to Dk,ε at the point x. For any x ∈ ∂Dk,ε we define the
mapping Bk,ε(x) := −iσ3(σ · νDk,ε

(x)) : C2 → C2, which is self-adjoint with eigenvalues ±1,
and the corresponding eigenprojections P±

k,ε(x) := 1±Bk,ε(x)
2 . One has the following equality

for v = (v1, v2) ∈ H1(R2;C2):

∥Dεv∥2
L2(R2) = ∥∇v∥2

L2(R2) +
∑

k∈Z2

∫
Dk,ε

m2
k,ε|v|2 dx

+
∑

k∈Z2

∫
∂Dk,ε

mk,ε|P+
k,εv|2 dσ −

∑
k∈Z2

∫
∂Dk,ε

mk,ε|P−
k,εv|2 dσ. (5.14)

For mk,ε being the same for all k the proof of (5.14) can be found in [BCLS19, p. 1885] (see
also [SV19, Lemma 2]), for the case of different mk,ε the proof is absolutely the same. We
also remark that by careful inspection of [BCLS19] one sees that this formula is still valid if
the boundaries of Dk,ε and Dk′,ε for some k, k′ ∈ Z2, k ̸= k′ have a non-empty intersection.

From (5.14) we derive easily the following estimate:

∥Dεv∥2
L2(R2) ≥ 1

2∥∇v∥2
L2(R2) + 1

2
∑

k∈Z2

[
∥∇v∥2

L2(Dk,ε) + 2mk,ε

∫
∂Dk,ε

(
|P+

k,εv|2 − |P−
k,εv|2

)
dσ

]
.

(5.15)

To proceed further we observe that due to (2.5), (2.6), (4.2), we get

∀ε ∈ (0, ε0] ∀k ∈ Z2 : 1
ΛS(Dk,ε) ≤ (Ctr)2(1 + Λ−1

N ). (5.16)
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Furthermore, the assumption (2.11) being combined with (2.4) implies

sup
k∈Z2

mk,εdk,ε → 0 as ε → 0. (5.17)

Finally, using the assumption (2.5) (with u ≡ 1) and taking into account that each Dk,ε is
contained in a unit disk, we get

|∂Dk,ε| ≤ (Ctr)2|Dk,ε|. (5.18)

Notice that for any fixed vector ξ = (ξ1, ξ2) ∈ C2 and any k ∈ Z2∫
∂Dk,ε

|P+
k,εξ|2 dσ −

∫
∂Dk,ε

|P−
k,εξ|2 dσ

= 2Re
∫

∂Dk,ε

(
− iσ3(σ · νDk,ε

(x))ξ
)

· ξ dσ(x) = 0,
(5.19)

where we used that
∫

∂Dk,ε
νDk,ε

(x) dσ(x) = 0 in the last step. Taking into account that
|P±

k,εv| ≤ |v|, we deduce from (5.18) and (5.19) using the inequality 2xy ≤ t−1x2 + ty2

(x, y, t > 0) that for any v ∈ H1(R2;C2) and any fixed constant α > 0 and all k ∈ Z2

mk,ε

∫
∂Dk,ε

(
|P+

k,εv|2 − |P−
k,εv|2

)
dσ

= mk,ε

∫
∂Dk,ε

(
|P+

k,ε(v − ⟨v⟩Dk,ε
+ ⟨v⟩Dk,ε

)|2 − |P−
k,ε(v − ⟨v⟩Dk,ε

+ ⟨v⟩Dk,ε
)|2
)

dσ

≥ −mk,ε

∫
∂Dk,ε

|v − ⟨v⟩Dk,ε
|2 dσ − 4mk,ε

∫
∂Dk,ε

|v − ⟨v⟩Dk,ε
| · |⟨v⟩Dk,ε

| dσ

≥ −
(

mk,ε + 1
αdk,ε

)∫
∂Dk,ε

|v − ⟨v⟩Dk,ε
|2 dσ − 4m2

k,εdk,εα|∂Dk,ε| · |⟨v⟩Dk,ε
|2

≥ −
(

mk,ε + 1
αdk,ε

)∫
∂Dk,ε

|v − ⟨v⟩Dk,ε
|2 dσ − 4m2

k,εα
|∂Dk,ε|
|D

k,ε
|

∥v∥2
L2(Dk,ε)

≥ −
(

mk,ε + 1
αdk,ε

)∫
∂Dk,ε

|v − ⟨v⟩Dk,ε
|2 dσ − 4m2

k,εα(Ctr)2∥v∥2
L2(Dk,ε), (5.20)

where for v = (v1, v2) : R2 → C2 we denote ⟨v⟩Dk,ε
:= (⟨v1⟩Dk,ε

, ⟨v2⟩Dk,ε
) ∈ C2. In view

of (5.17), by choosing the value of the constant α > 0 sufficiently large we can fulfil the
conditions

sup
k∈Z2

(
4mk,εdk,ε + 4

α

)
<

1
4
(
1 + Λ−1

N

)−1
(Ctr)−2,

sup
k∈Z2

(
4mk,εdk,ε + 4

α

)
<

1
4ΛN(Ctr)−2,

(5.21)

for all sufficiently small ε > 0. For this choice of α > 0, we get for all sufficiently small ε > 0
and any k ∈ Z2

1
2∥∇v∥2

L2(Dk,ε) −
(

mk,ε + 1
αdk,ε

)∫
∂Dk,ε

|v − ⟨v⟩Dk,ε
|2 dσ

= 1
4∥∇(v − ⟨v⟩Dk,ε

)∥2
L2(Dk,ε)

+ 1
4

[
∥∇(v − ⟨v⟩Dk,ε

)∥2
L2(Dk,ε) −

(
4mk,ε + 4

αdk,ε

)∫
∂Dk,ε

|v − ⟨v⟩Dk,ε
|2 dσ

]

≥ 1
4d2

k,ε

ΛN∥v − ⟨v⟩Dk,ε
∥2

L2(Dk,ε) + 1
4d2

k,ε

Λ−4mk,εdk,ε− 4
α

R (Dk,ε)∥v − ⟨v⟩Dk,ε
∥2

L2(Dk,ε)
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≥ 1
4d2

k,ε

ΛN −

(
4mk,εdk,ε + 4

α

)
|∂Dk,ε|

|Dk,ε|

1 −

√√√√4mk,εdk,ε + 4
α

ΛS(Dk,ε)

−2 ∥v − ⟨v⟩Dk,ε
∥2

L2(Dk,ε)

≥ 1
4d2

k,ε

(
ΛN − 4

(
4mk,εdk,ε + 4

α

)
(Ctr)2

)
∥v − ⟨v⟩Dk,ε

∥2
L2(Dk,ε) ≥ 0, (5.22)

where we used that the gradient of a constant function is zero in the first step, min-max
characterisations (4.1), (4.3), assumption (2.6), and scaling properties (4.5) in the second
step, combined the first condition in (5.21) with the estimates (5.16), (5.18) and the bound
(4.4) in the third and the fourth steps, and finally employed the second condition in (5.21) in
the last step.

Then, we can extend (5.15) as follows,

∥Dεv∥2
L2(R2) ≥ 1

2∥∇v∥2
L2(R2) − 4(Ctr)2α

∑
k∈Z2

m2
k,ε∥v∥2

L2(Dk,ε)

≥ 1
2∥∇v∥2

L2(R2) − 4m2
⋆(Ctr)2αC2
|Dk,ε|2

∑
k∈Z2

 ε2

d2
k,ε

∥v∥2
L2(Rk,ε)+

ε4 ln
(

ε
dk,ε

)
d2

k,ε

∥∇v∥2
L2(Rk,ε)


≥ 1

2∥∇v∥2
L2(R2)− 36(m⋆Ctr)2αC2

(πρ2)2

{
ε2

d2
ε

∥v∥2
L2(R2)+

ε4 ln
(

ε
dε

)
d2

ε

∥∇v∥2
L2(R2)

}
, (5.23)

where in the first step we employ (5.20) and (5.22), in the second step we apply Lemma 4.6,
and in the last step we use (2.3), (2.4), and (5.8). Thus, we arrive at the estimate

∥Dεv∥2
L2(R2) ≥

1
2 − C4

ε4 ln
(

ε
dε

)
d2

ε

 ∥∇v∥2
L2(R2) − C4

ε2

d2
ε

∥v∥2
L2(R2), (5.24)

where

C4 = 36(m⋆Ctr)2αC2
(πρ2)2 . (5.25)

In the following, we assume that ε is sufficiently small in order to have (cf. (2.11))

C4
ε4 ln

(
ε
dε

)
d2

ε

≤ 1
4 . (5.26)

Combining (5.24) and (5.26) we arrive at the final estimate

∥Dεv∥2
L2(R2) +

(
C4

ε2

d2
ε

+ 1
4

)
∥v∥2

L2(R2) ≥ 1
4∥v∥2

H1(R2). (5.27)

End of the proof. It follows from (5.11), (5.13), (5.27) that for sufficiently small ε one has
the estimate

∣∣sε[u, v]
∣∣ ≤ 2C3ε

(
ln( ε

dε
)
) 1

2
(
∥Du∥2

L2(R2)+∥u∥2
L2(R2)

) 1
2

(
∥Dεv∥2

L2(R2)+
(

C4
ε2

d2
ε

+ 1
4

)
∥v∥2

L2(R2)

) 1
2

.

Applying Theorem 3.1 (with a = 1, b = C4
ε2

d2
ε

+ 1
4 , c = 2C3ε(ln( ε

dε
))1/2) and taking into

account (2.2) we get

∥∥(D − i)−1 − (Dε − i)−1∥∥ ≤ C
ε2

dε

(
ln
(

ε

dε

)) 1
2

,

where C = 2C3
√

2C4 + 5
4 with C3, C4 being defined via (5.12), (5.25) (the constants C1, C2

standing in the formulae for C3, C4 are given in (4.20), (4.23)). In particular, the family of
operators Dε converges to D in the norm resolvent sense as ε → 0.
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